-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathibpbnn_vae.py
1283 lines (1129 loc) · 60 KB
/
ibpbnn_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy as cpy
import gzip
import math
import os
import pickle
from copy import deepcopy
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributions as tod
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from utils import *
from scipy.special import beta as BETA
# torch.autograd.set_detect_anomaly(True)
class IBP_BAE(nn.Module):
# Done
def __init__(self, input_size, hidden_size, output_size, training_size, max_tasks,
no_train_samples=1, no_pred_samples=100, prev_means=None, prev_log_variances=None, prev_masks=None, kl_mask = None, learning_rate=0.01,
prior_mean=0.0, prior_var=0.1, alpha=None, beta = None, prev_pber = None, re_mode='gumbsoft', single_head=False, acts = None):
super(IBP_BAE, self).__init__()
"""
input_size : Input Layer Dimension.
hidden_size : List Representing the hidden layer sizes.
output_size : Output Layer Dimenison.
training_size : Number of training data points (for defining global multiplier for KL divergences).
no_train_samples : Number of posterior samples to be taken while training for calculating gradients.
no_test_sample : Number of posterior samples to be taken while testing for calculating gradients.
prev_means : parameter means learned by training on previously seen tasks.
prev_log_variances : parameter log variances learned by training on previously seen tasks.
prev_masks : IBP based masks learned for all the tasks previously seen.
kl_mask : Union of all prev_masks (Used for prior masking).
learning_rate : The learning rate used for the weight update.
prior_mean : Initial prior mean.
prior_variances : Initial prior variance.
alpha : IBP concentration parameter.
beta : IBP rate parameter.
prev_pber : (Not required) Used as a initialization for bernoulli probabilty for current task mask.
re_mode : Reparameterization (default is gumbel softmax)
single_head : Weather to use task based seperate heads or single head for all the task.
"""
#### Input and Output placeholders
'''
self.x = tf.placeholder(tf.float32, [None, input_size])
self.y = tf.placeholder(tf.float32, [None, output_size])
self.temp = tf.placeholder(tf.float32, [1])
self.task_idx = tf.placeholder(tf.int32)
'''
#### Hyperparameters
self.z_index = len(hidden_size)
hidden_size = hidden_size[:-1] + [hidden_size[-1]*2] + hidden_size[::-1][1:]
self.temp_prior = 0.25# prior over the gumbel dist. (Temperature Prior)
self.min_temp = 0.3 # minimum limit on temperature.
self.eps = 10e-8 # Small value to avoid errors (e.g Div 0).
self.curr_masks = []
self.kl_mask = kl_mask # Current union of all the masks learned on previous tasks.
self.use_kl_masking = True # paramter to decide to use or not use prior masking (Use KL Mask).
self.use_uniform_prior = True # If intial prior is uniform and subsequent prior are Gaussian.
self.no_layers = len(hidden_size) + 1 # number of non-output layers.
self.single_head = single_head # Task id based multihead or single head output structure.
self.no_train_samples = no_train_samples # Training posterior sample size for approximation of Expectation.
self.no_pred_samples = no_pred_samples # Testing posterior sample size for approximation of Expectation.
self.training_size = training_size# Number of training data points (for normlaizing gradient values).
self.global_multiplier = 1# For explicit prior importance during KL divergence calculation.
self.init_var = -6.0# Prior initializaion log variance.
self.acts = acts # Per layer Activations if are explicitly mentioned
self.gauss_rep = True # Use gaussian reparameterization
self.device = 'cpu'
self.relu = F.leaky_relu
self.conditional = True # Weather to learn the priors on latent space or not
self.use_unit_sigma = True # If learning the latent space weather to use fixed unit sigma or learn that also (True mean fix unit sigma)
self.prior_mu = torch.tensor(prior_mean).float() # If not learning the prior over latent space use these prior
self.prior_var = torch.tensor(prior_var).float()
self.KL_gauss_scaling = 1.0 # Explicit scaling of gaussian KL divergence on latent space.
## Parameter Initiliatlizations
self.intialize(alpha, beta, input_size, hidden_size, output_size, prev_means,
prev_log_variances, prior_mean, prior_var, prev_pber, re_mode)
## All the previously learned tasks boolean masks are to be stored.
self.prev_masks = nn.ParameterList([])
for l in range(self.no_layers-1):
prev_mask_l_init = torch.tensor(prev_masks[l]) if prev_masks is not None else torch.zeros(max_tasks, self.W_m[l].shape[0], self.W_m[l].shape[1]).float()
self.prev_masks.append(nn.Parameter(prev_mask_l_init, requires_grad = False))
## Initializing the session and optimizer for current model.
self.assign_optimizer(learning_rate)
# print(self)
# print([s.shape for s in self.parameters() if(self.z_mus[0] is s)])
# assert 1== 2
# self.gen_samples(0,10)
# Done
def intialize(self, alpha, beta, input_size, hidden_size, output_size, prev_means,
prev_log_variances, prior_mean, prior_var, prev_pber, re_mode):
## Default values for IBP prior parameters per hidden layer.
if(alpha is None):
alpha = [4.0 for i in range(len(hidden_size))]
if(beta is None):
beta = [1.0 for i in range(len(hidden_size))]
## Creating priors and current set of weights that have been learned.
self.def_parameters(input_size, hidden_size, output_size, prev_means, prev_log_variances, prior_mean, prior_var)
## Initilizing the model IBP stick breaking parameters.
self.init_ibp_params(alpha, beta, re_mode, prev_pber)
# Done
def truncated_normal(self, shape, stddev = 0.01):
''' Initialization : Function to return an truncated_normal initialized parameter'''
uniform = torch.from_numpy(np.random.uniform(0, 1, shape)).float()
return parameterized_truncated_normal(uniform, mu=0.0, sigma=stddev, a=-2*stddev, b=2*stddev)
# Done
def constant(self, init, shape=None):
''' Initialization : Function to return an constant initialized parameter'''
if(shape is None):
return torch.tensor(init).float()
return torch.ones(shape).float()*init
# Done
def def_parameters(self, in_dim, hidden_size, out_dim, init_means, init_variances, prior_mean, prior_var):
## A single list containing all layer sizes
layer_sizes = deepcopy(hidden_size)
layer_sizes.append(out_dim)
layer_sizes.insert(0, in_dim)
lvar_init = self.init_var # initialization for log variances if not given.
## Defining means and logvariances for weights and biases for model weights and priors.
### Variational Posterior parameters
self.W_m = nn.ParameterList([]) # weight means
self.b_m = nn.ParameterList([]) # bias means
self.W_v = nn.ParameterList([]) # weight variances
self.b_v = nn.ParameterList([]) # bias variances
self.W_last_m = nn.ParameterList([]) # last layers weight mean
self.b_last_m = nn.ParameterList([]) # last layers bias mean
self.W_last_v = nn.ParameterList([]) # last layer weight var
self.b_last_v = nn.ParameterList([]) # last layer bias var
self.z_mus = nn.ParameterList([]) # last layer bias var
self.z_lvs = nn.ParameterList([]) # last layer bias var
### Prior Parameters
self.prior_W_m = []
self.prior_b_m = []
self.prior_W_v = []
self.prior_b_v = []
self.prior_W_last_m = []
self.prior_b_last_m = []
self.prior_W_last_v = []
self.prior_b_last_v = []
## Initialization for non-last layer parameters.
for i in range(len(hidden_size)):
din = layer_sizes[i]
dout = layer_sizes[i+1]
if(i == self.z_index):
din = din//2
Wi_m_val = self.truncated_normal([din, dout], stddev=0.01)
bi_m_val = self.truncated_normal([dout], stddev=0.01)
Wi_v_val = self.constant(lvar_init, shape=[din, dout])
bi_v_val = self.constant(lvar_init, shape=[dout])
Wi_m_prior = torch.zeros(din, dout) + torch.tensor(prior_mean).view(1,1)
bi_m_prior = torch.zeros(1,dout) + torch.tensor(prior_mean).view(1,1)
Wi_v_prior = torch.zeros(din, dout) + torch.tensor(prior_var).view(1,1)
bi_v_prior = torch.zeros(1,dout) + torch.tensor(prior_var).view(1,1)
if init_means is None or len(init_means[0]) == 0: # If intial means were not present or given.
pass
else: # Intial Means are present
Wi_m_val = init_means[0][i]
bi_m_val = init_means[1][i]
Wi_m_prior = init_means[0][i]
bi_m_prior = init_means[1][i]
if init_variances is None or len(init_variances[0]) == 0: # Means are given but variances are not known
pass
else: # Both means and variances were given/known.
Wi_v_val = init_variances[0][i]
bi_v_val = init_variances[1][i]
Wi_v_prior = init_variances[0][i].exp()
bi_v_prior = init_variances[1][i].exp()
Wi_m = nn.Parameter(Wi_m_val)
bi_m = nn.Parameter(bi_m_val)
Wi_v = nn.Parameter(Wi_v_val)
bi_v = nn.Parameter(bi_v_val)
# Append Variational parameters
self.W_m.append(Wi_m)
self.b_m.append(bi_m)
self.W_v.append(Wi_v)
self.b_v.append(bi_v)
# Append Prior parameters
self.prior_W_m.append(Wi_m_prior)
self.prior_b_m.append(bi_m_prior)
self.prior_W_v.append(Wi_v_prior)
self.prior_b_v.append(bi_v_prior)
## Copying the previously trained last layer weights in case of multi head output
if init_means is not None and init_variances is not None:
init_Wlast_m = init_means[2]
init_blast_m = init_means[3]
init_Wlast_v = init_variances[2]
init_blast_v = init_variances[3]
mus = init_means[4]
logvars = init_variances[4]
for i in range(len(init_Wlast_m)): # Iterating over previous tasks to copy last layer
W_i_m = init_Wlast_m[i]
b_i_m = init_blast_m[i]
W_i_v = init_Wlast_v[i]
b_i_v = init_blast_v[i]
Wi_m_prior = init_Wlast_m[i]
bi_m_prior = init_blast_m[i]
Wi_v_prior = init_Wlast_v[i].exp()
bi_v_prior = init_blast_v[i].exp()
Wi_m = nn.Parameter(W_i_m)
bi_m = nn.Parameter(b_i_m)
Wi_v = nn.Parameter(W_i_v)
bi_v = nn.Parameter(b_i_v)
# Copying last layer variational parameters for previous tasks
self.W_last_m.append(Wi_m)
self.b_last_m.append(bi_m)
self.W_last_v.append(Wi_v)
self.b_last_v.append(bi_v)
# Copying last layer prior parameters for previous tasks
self.prior_W_last_m.append(Wi_m_prior)
self.prior_b_last_m.append(bi_m_prior)
self.prior_W_last_v.append(Wi_v_prior)
self.prior_b_last_v.append(bi_v_prior)
if(self.conditional):
for i in range(len(mus)): # Iterating over previous tasks to copy last layer
mu_i = mus[i]
lv_i = logvars[i]
z_mu = nn.Parameter(mu_i)
self.z_mus.append(z_mu)
z_lv = nn.Parameter(lv_i)
self.z_lvs.append(z_lv)
## Adding the last layer weights for current task.
z_dim = layer_sizes[self.z_index]//2
# print(z_dim)
# assert 1==2
if(self.conditional):
self.z_mus.append(nn.Parameter(torch.randn(z_dim)))
self.z_lvs.append(nn.Parameter(torch.randn(z_dim)))
# self.z_lvs.append(nn.Parameter(torch.randn(1)))
if(not self.single_head or len(self.W_last_m) == 0):
din = layer_sizes[-2]
dout = layer_sizes[-1]
if(self.z_index==1):
din = din//2
if init_means is not None and init_variances is None:
Wi_m_val = init_means[2][0]
bi_m_val = init_means[3][0]
else:
Wi_m_val = self.truncated_normal([din, dout], stddev=0.01)
bi_m_val = self.truncated_normal([dout], stddev=0.01)
Wi_v_val = self.constant(lvar_init, shape=[din, dout])
bi_v_val = self.constant(lvar_init, shape=[dout])
Wi_m = nn.Parameter(Wi_m_val)
bi_m = nn.Parameter(bi_m_val)
Wi_v = nn.Parameter(Wi_v_val)
bi_v = nn.Parameter(bi_v_val)
Wi_m_prior = torch.zeros(din, dout) + torch.tensor(prior_mean).view(1,1)
bi_m_prior = torch.zeros(1,dout) + torch.tensor(prior_mean).view(1,1)
Wi_v_prior = torch.zeros(din, dout) + torch.tensor(prior_var).view(1,1)
bi_v_prior = torch.zeros(1,dout) + torch.tensor(prior_var).view(1,1)
# Variatonal Parameters for current task
self.W_last_m.append(Wi_m)
self.b_last_m.append(bi_m)
self.W_last_v.append(Wi_v)
self.b_last_v.append(bi_v)
# Prior parameters for current task
self.prior_W_last_m.append(Wi_m_prior)
self.prior_b_last_m.append(bi_m_prior)
self.prior_W_last_v.append(Wi_v_prior)
self.prior_b_last_v.append(bi_v_prior)
## Zipping Everything (current posterior parameters) into single entity (self.weights)
means = [self.W_m, self.b_m, self.W_last_m, self.b_last_m]
logvars = [self.W_v, self.b_v, self.W_last_v, self.b_last_v]
self.size = layer_sizes
self.weights = [means, logvars]
# Done
def extend_tensor(self, tensor, dims = None, extend_with = 0.0):
if(dims is None):
return tensor
else:
if(len(tensor.shape) != len(dims)):
print(tensor.shape, dims)
assert 1==12
if(len(dims) == 1):
temp = tensor.cpu().detach().numpy()
D = temp.shape[0]
new_array = np.zeros(dims[0]+D) + extend_with
new_array[:D] = temp
elif(len(dims) == 2):
temp = tensor.cpu().detach().numpy()
D1, D2 = temp.shape
new_array = np.zeros((D1+dims[0], D2+dims[1])) + extend_with
new_array[:D1,:D2] = temp
return torch.tensor(new_array).float().to(self.device)
# Done
def grow_if_necessary(self, temp = 0.1):
grew = False
if(not self.grow_net):
return grew
with torch.no_grad():
masks = self.sample_fix_masks(no_samples = self.no_pred_samples, temp = temp)
for layer in range(len(self.size)-2):
layer_mask = torch.round(masks[layer]).detach()
num_rows, num_cols = layer_mask.shape
count_empty = 0
for col in range(num_cols):
if(sum(layer_mask[:,num_cols-col-1])!=0.0):
break
count_empty += 1
if(count_empty < self.grow_min):
grew = True
self.grow_layer(layer, (self.grow_min-count_empty))
return grew
# Done
def grow_layer(self, layer, num_hidden, task_id = -1, temp = None):
with torch.no_grad():
# weight_means
self.W_m[layer] = nn.Parameter(self.extend_tensor(self.W_m[layer], dims = [0,num_hidden], extend_with = 0.01))
# weight_logvars
self.W_v[layer] = nn.Parameter(self.extend_tensor(self.W_v[layer], dims = [0,num_hidden], extend_with = 0.01))
# bias_means
self.b_m[layer] = nn.Parameter(self.extend_tensor(self.b_m[layer], dims = [num_hidden], extend_with = 0.01))
# bias_logvars
self.b_v[layer] = nn.Parameter(self.extend_tensor(self.b_v[layer], dims = [num_hidden], extend_with = 0.01))
# weight_means
self.prior_W_m[layer] = self.extend_tensor(self.prior_W_m[layer], dims = [0,num_hidden], extend_with = 0.0)
# weight_logvars
self.prior_W_v[layer] = self.extend_tensor(self.prior_W_v[layer], dims = [0,num_hidden], extend_with = 1.0)
# bias_means
self.prior_b_m[layer] = self.extend_tensor(self.prior_b_m[layer], dims = [num_hidden], extend_with = 0.0)
# bias_logvars
self.prior_b_v[layer] = self.extend_tensor(self.prior_b_v[layer], dims = [num_hidden], extend_with = 1.0)
# mask
_p_init = np.log(0.1/0.9)
self._p_bers[layer] = nn.Parameter(self.extend_tensor(self._p_bers[layer], dims = [0,num_hidden], extend_with = _p_init))
# stick
last_alpha_spi = self.softplus_inverse(self.alphas[layer]).cpu().detach().view(-1).numpy()[-1]
last_beta_spi = self.softplus_inverse(self.betas[layer]).cpu().detach().view(-1).numpy()[-1]
self._concs1[layer] = nn.Parameter(self.extend_tensor(self._concs1[layer], dims = [num_hidden], extend_with = last_alpha_spi))
self._concs2[layer] = nn.Parameter(self.extend_tensor(self._concs2[layer], dims = [num_hidden], extend_with = last_beta_spi))
last_alpha = self.alphas[layer].cpu().detach().view(-1).numpy()[-1]
last_beta = self.betas[layer].cpu().detach().view(-1).numpy()[-1]
self.alphas[layer] = self.extend_tensor(self.alphas[layer], dims = [num_hidden], extend_with = last_alpha)
self.betas[layer] = self.extend_tensor(self.betas[layer], dims = [num_hidden], extend_with = last_beta)
if(layer < len(self.size)-3):
self.W_m[layer+1] = nn.Parameter(self.extend_tensor(self.W_m[layer+1], dims = [num_hidden,0], extend_with = 0.01))
self.W_v[layer+1] = nn.Parameter(self.extend_tensor(self.W_v[layer+1], dims = [num_hidden,0], extend_with = 0.01))
self.prior_W_m[layer+1] = self.extend_tensor(self.prior_W_m[layer+1], dims = [num_hidden,0], extend_with = 0.0)
self.prior_W_v[layer+1] = self.extend_tensor(self.prior_W_v[layer+1], dims = [num_hidden,0], extend_with = 1.0)
self._p_bers[layer+1] = nn.Parameter(self.extend_tensor(self._p_bers[layer+1], dims = [num_hidden,0], extend_with = _p_init))
else:
self.W_last_m[task_id] = nn.Parameter(self.extend_tensor(self.W_last_m[task_id], dims = [num_hidden,0], extend_with = 0.01))
self.W_last_v[task_id] = nn.Parameter(self.extend_tensor(self.W_last_v[task_id], dims = [num_hidden,0], extend_with = 0.01))
self.prior_W_last_m[task_id] = self.extend_tensor(self.prior_W_last_m[task_id], dims = [num_hidden,0], extend_with = 0.0)
self.prior_W_last_v[task_id] = self.extend_tensor(self.prior_W_last_v[task_id], dims = [num_hidden,0], extend_with = 1.0)
self.size[layer+1] += num_hidden
print("Structure Grew!, Layer :", layer , "current output size", self.size[layer+1])
# self.dynamize_Adam(reset = True)
self.dynamize_Adam(reset = True, amsgrad = True)
# Done
def dynamize_Adam(self, reset = False, amsgrad = False):
with torch.no_grad():
if(reset or self.optimizer == None):
self.optimizer = self.get_optimizer(self.learning_rate, fix=False)
self.optimizer.step()
else:
optim = self.optimizer
newoptim = self.get_optimizer(self.learning_rate, fix=False)
for i in range(len(optim.param_groups)):
group_old = optim.param_groups[i]
group_new = newoptim.param_groups[i]
for j in range(len(group_old['params'])):
params_old = group_old['params'][j]
params_new = group_new['params'][j]
amsgrad = group_old['amsgrad']
newoptim.param_groups[i]['amsgrad'] = amsgrad
state_old = optim.state[params_old]
state_new = newoptim.state[params_new]
state_new['step'] = torch.zeros_like(params_new.data)
state_new['exp_avg'] = torch.zeros_like(params_new.data)
state_new['exp_avg_sq'] = torch.zeros_like(params_new.data)
exp_avg = state_new['exp_avg']
exp_avg_sq = state_new['exp_avg_sq']
max_exp_avg_sq = None
if(amsgrad):
state_new['max_exp_avg_sq'] = torch.zeros_like(params_new.data)
max_exp_avg_sq = state_new['max_exp_avg_sq']
if(len(state_old) == 0):
pass
else:
if(len(state_old['exp_avg'].shape)==2):
no,do = state_old['exp_avg'].shape
exp_avg[:no,:do] = state_old['exp_avg']
exp_avg_sq[:no,:do] = state_old['exp_avg_sq']
if(max_exp_avg_sq is not None):
max_exp_avg_sq[:no,:do] = state_old['max_exp_avg_sq']
state_new['step'][:no,:do] = state_old['step']
elif(len(state_old['exp_avg'].shape)==1):
no = state_old['exp_avg'].shape[0]
exp_avg[:no] = state_old['exp_avg']
exp_avg_sq[:no] = state_old['exp_avg_sq']
if(max_exp_avg_sq is not None):
max_exp_avg_sq[:no] = state_old['max_exp_avg_sq']
state_new['step'][:no] = state_old['step']
else:
assert 1 == 2 ,'error in dynamic adam'
state_new['exp_avg'] = exp_avg
state_new['exp_avg_sq'] = exp_avg_sq
newoptim.state[params_new] = state_new
del optim
self.optimizer = newoptim
# Done
def softplus(self, x, beta = 1.0, threshold = 20.0):
return F.softplus(x, beta=beta, threshold=threshold)
# Done
def softplus_inverse(self, x, beta = 1.0, threshold = 20.0):
eps = 10e-8
mask = (x <= threshold).float().detach()
xd1 = x*mask
xd2 = xd1.mul(beta).exp().sub(1.0-eps).log().div(beta)
xd3 = xd2*mask + x*(1-mask)
return xd3
# Done
def init_ibp_params(self, alpha, beta, re_mode, init_pber):
# Reparameterization Mode (incase needed in future)
self.reparam_mode = re_mode
# Initializing the IBP parameters
self.alphas = []# prior concentration
self.betas = []# prior rate
self._concs1, self._concs2 = nn.ParameterList([]), nn.ParameterList([])# Posterior parameters based on p_bers.
self._p_bers = nn.ParameterList([])# Variational parameters for IBP posterior.
# Iteration over layers to inialize IBP parameters per layer.
for l in range(self.no_layers-1):
din, dout = self.size[l], self.size[l+1] # Layer dimenisons
if(l == self.z_index):
din = din//2
self.alphas.append(self.constant(alpha[l]))# Prior
self.betas.append(self.constant(beta[l]))# Prior
# Modified Variatonal Parameters contrained to be positive by taking inverse softplus then softplus.
_conc1 = nn.Parameter(self.softplus_inverse(self.constant(np.ones((dout))*alpha[l])))
_conc2 = nn.Parameter(self.softplus_inverse(self.constant(np.ones((dout))*beta[l])))
# Real variationa parameters
self._concs1.append(_conc1)
self._concs2.append(_conc2)
# Initializing the bernoulli probability variational parameters.
if self.reparam_mode is 'gumbsoft':
if(init_pber is None):# If initlization given
_p_ber_init = self.logit(torch.tensor(np.float32(np.ones((din, dout))*(0.05))))
else:# Default Initializaiton
_p_ber_init = self.constant(np.float32(init_pber[l]), dtype = tf.float32)
_p_ber = nn.Parameter(_p_ber_init)
# Taking sigmoid to constraint to bernoulli probability to range [0,1].
self._p_bers.append(_p_ber)# intermediate parameter.
# Done
def _prediction(self, inputs, task_idx, no_samples, const_mask=False, temp = 0.1):
return self._prediction_layer(inputs, task_idx, no_samples, const_mask, temp = temp)
# Done
def sample_gauss(self, mean, logvar, sample_size):
if(len(mean.shape) == 2):
N, M = mean.shape
device = self.device
return (torch.randn(sample_size,N,M).to(device)*((0.5*logvar).exp().unsqueeze(0)) + mean.unsqueeze(0))# samples xN x M
else:
K, N, M = mean.shape
device = self.device
# print(mean.shape, logvar.shape, sample_size)
return (torch.randn(sample_size,N,M).to(device)*((0.5*logvar).exp()) + mean)# samples x N x M
# Not Done : Update the shrinked size usage
def Linear(self, input, layer, no_samples=1, const_mask=False, temp = 0.1, task_id = None):
"""
input : N x [sample_size or None] x Din
output : N x [sample_size] x Dout
"""
if(layer < len(self.size)-2):
params = [self.W_m[layer],self.W_v[layer],self.b_m[layer],self.b_v[layer]]
else:
if(self.single_head):
params = [self.W_last_m[0],self.W_last_v[0],
self.b_last_m[0],self.b_last_v[0]]
else:
params = [self.W_last_m[task_id],self.W_last_v[task_id],
self.b_last_m[task_id],self.b_last_v[task_id]]
shape = input.shape
if(len(shape) == 2):
A, B = shape
x = input.unsqueeze(1)
else:
x = input
## x is Batch x sample_size|1 x Din
A,B,C = x.shape
# x = x.view(A,B,C,1).permute(0,1,3,2) # Batch x sample_size|1 x 1 x Din
x = x.permute(1,0,2)
if(B==1):
x = x.repeat(no_samples,1,1)
weight_mean, weight_logvar, bias_mean, bias_logvar = params
if(self.gauss_rep):
weights = self.sample_gauss(weight_mean, weight_logvar, no_samples) # sample_size x Din x Dout
biass = self.sample_gauss(bias_mean.unsqueeze(0), bias_logvar.unsqueeze(0), no_samples)# sample_size x 1 x Dout
else:
weights = weight_mean.unsqueeze(0)
biass = bias_mean.unsqueeze(0)
# Sampling mask or bernoulli random varible
if(layer < len(self.size)-2):
if const_mask:
bs = self.prev_masks[layer][task_id].unsqueeze(0).to(self.device)
else:
vs, bs, logit_post = self.ibp_sample(layer, no_samples, temp = temp) # Sampling through IBP
self.KL_B.append(self._KL_B(layer, vs, bs, logit_post, temp = temp)) # Calcuting KL divergence between prior and posterior
# Generating masked weights and biases for current layer
with torch.no_grad():
_, Din1, Dout1 = weights.shape
_, Din2, Dout2 = bs.shape
Din = min(Din1, Din2)
Dout = min(Dout1, Dout2)
weight = weights*bs # weights * ibp_mask
bias = biass*(bs.max(dim=1)[0].unsqueeze(1)) # bias * ibp_mask
else:
weight = weights # weights
bias = biass # bias
try:
ret = torch.bmm(x, weight) + bias
except:
print(x.shape, weight.shape, bias.shape, x[0], weight, bias)
print("weights", [m.shape for m in self.W_m], [m.shape for m in self.W_last_m])
assert 1==2
return ret.permute(1,0,2)
# Done
def encode(self, x, task_id = -1, no_samples=1, const_mask=False, temp = 0.1):
if(self.W_last_m[0].is_cuda):
self.device = 'cuda'
activations = self.acts
lsizes = self.size
iterto = len(lsizes)-1
for i in range(self.z_index):
'''
if(i < iterto-1):
x = torch.mm(x, self.W_m[i]) + self.b_m[i]
else:
x = torch.mm(x, self.W_last_m[task_id]) + self.b_last_m[task_id]
'''
x = self.Linear(x, layer = i, no_samples=no_samples, const_mask=const_mask, temp = temp ,task_id = task_id)
if(i < self.z_index-1):
if(activations is not None):
act = activations[i]
if(act == 'linear'):
pass
elif(act == 'relu'):
x = self.relu(x)
else:
x = self.relu(x)
D = x.shape[-1]//2
x = x.permute(1,0,2)
mu = x[:,:,:D]
logvar = x[:,:,D:]
return mu, logvar
# Done
def decode(self, x, task_id = -1, no_samples=1, const_mask=False, temp = 0.1):
if(self.W_last_m[0].is_cuda):
self.device = 'cuda'
activations = self.acts
lsizes = self.size
iterto = len(lsizes)-1
for i in range(self.z_index, iterto):
'''
if(i < iterto-1):
x = torch.mm(x, self.W_m[i]) + self.b_m[i]
else:
x = torch.mm(x, self.W_last_m[task_id]) + self.b_last_m[task_id]
'''
if(i < iterto-1):
x = self.Linear(x, layer=i, no_samples=no_samples, const_mask=const_mask, temp = temp,task_id = task_id)
if(activations is not None):
act = activations[i]
if(act == 'linear'):
pass
elif(act == 'relu'):
x = self.relu(x)
else:
x = self.relu(x)
else:
x = self.Linear(x, layer = i, no_samples=no_samples, const_mask=const_mask, temp = temp ,task_id = task_id)
return x
# Done
def _prediction_layer(self, x, task_id = -1, no_samples=1, const_mask=False, temp = 0.1):
self.KL_B = [] # KL Divergence terms for the bernoulli distribution
self.KL_G = [] # KL Divergence terms for the latent Gaussian distribution
mu, lvar = self.encode(x, task_id, no_samples , const_mask , temp)
logvar = self.softplus(lvar).add(self.eps).log()
z = self.sample_gauss(mu, logvar, 1).permute(1,0,2)
K, N, D = mu.shape
if(self.conditional):
mu_p = self.z_mus[task_id].unsqueeze(0).unsqueeze(0).repeat(K,N,1)
if(self.use_unit_sigma):
lv_p = torch.ones_like(mu)
else:
lv_p = self.z_lvs[task_id].exp().unsqueeze(0).unsqueeze(0).repeat(K,N,1)
prior = (mu_p, lv_p)
self.KL_G.append(self.KL_gauss(mu,logvar, prior)*self.KL_gauss_scaling + (mu_p.pow(2).sum().pow(0.5)-5.0).pow(2))
# self.KL_G.append(self.z_mus[task_id].pow(2).div(self.z_lvs[task_id].exp()+1).sum()-
# self.KL_gauss_scaling*10*sum([(self.z_mus[task_id] - prev.detach()).pow(2).div(
# self.z_lvs[task_id].exp()+self.z_lvs[t].detach().exp()
# ).sum() for t,prev in enumerate(self.z_mus[:-1])]))
else:
prior = (self.prior_mu.repeat(K,N,D).to(self.device), self.prior_var.repeat(K,N,D).to(self.device))
self.KL_G.append(self.KL_gauss(mu,logvar, prior)*self.KL_gauss_scaling)
assert prior[0].shape == torch.Size([K,N,D])
x = self.decode(z, task_id, no_samples , const_mask , temp)
return x
# Done
def v_post_distr(self, layer, shape = None):
# Real variationa parameters
_conc1, _conc2 = self._concs1[layer], self._concs2[layer]
conc1, conc2 = 1.0/self.softplus(_conc1), 1.0/self.softplus(_conc2)
eps = 10e-8
rand = torch.rand(shape).unsqueeze(2).to(self.device)+eps
a = conc1.view(-1).unsqueeze(0).unsqueeze(0)+eps
b = conc2.view(-1).unsqueeze(0).unsqueeze(0)+eps
samples = (1.0-rand.log().mul(b).exp()+eps).log().mul(a).exp()
# samples = (1.0-(rand+eps).pow(b)+eps).pow(a)
K, din = shape
dout = conc1.view(-1).shape[0]
assert samples.shape ==torch.Size([K,din,dout])
if(samples.mean()!=samples.mean()):
print(conc1, conc2, _conc1, _conc2)
assert 1==2
return samples
# Done
def ibp_sample(self, l, no_samples, temp = 0.1):
din = self.size[l]# current layer input dimenisions
if(l == self.z_index):
din = din//2
vs = self.v_post_distr(l,shape = [no_samples,din])# Independently sampling current layer IBP posterior : K x din x dout
pis = torch.cumprod(vs, dim=2)# Calcuting Pi's using nu's (IBP prior log probabilities): K x din x dout
method = 0
if(method == 0):
logit_post = self._p_bers[l].unsqueeze(0) + self.logit(pis)# Varaitonal posterior log_alpha: K x din x dout
elif(method == 1):
logit_post = self._p_bers[l].unsqueeze(0) + torch.log(pis+10e-8)# - torch.log(pis*(self._p_bers[l].unsqueeze(0).exp()-1)+1)
bs = self.reparam_bernoulli(logit_post, no_samples, self.reparam_mode, temp = temp)# Reparameterized bernoulli samples: K x din x dout
return vs, bs, logit_post
# Done
def reparam_bernoulli(self, logp, K, mode='gumbsoft', temp = 0.1):
if(temp == 0.1):
assert 1==2
din, dout = logp.shape[1], logp.shape[2]
eps = self.eps # epsilon a small value to avoid division error.
# Sampling from the gumbel distribution and Reparameterizing
if self.reparam_mode is 'gumbsoft': # Currently we are doing bernoulli sampling so bernoulli samples.
U = torch.tensor(np.reshape(np.random.uniform(size=K*din*dout), [K, din, dout])).float().to(self.device)
L = ((U+eps).log()-(1-U+eps).log())
B = torch.sigmoid((L+logp)/temp)
return B
# Done
def def_cost(self, x, y, task_id, temp, fix = False):
# KL Divergence and Objective Calculation.
self.cost1 = self._KL_term().div(self.training_size)# Gaussian prior KL Divergence
self.cost2 = None
self.cost3 = None
if(not fix):
self.cost2, pred = self._logpred(x, y, task_id, temp = temp)# Log Likelihood
self.cost3 = (self._KL_v()*self.global_multiplier+sum(self.KL_B) + sum(self.KL_G)).div(self.training_size)# IBP KL Divergences
self.cost = self.cost1 - self.cost2 + self.cost3# Objective to be minimized
self.acc = (y.argmax(dim = -1) == F.softmax(pred, dim = -1).mean(1).argmax(dim = -1)).float().mean()
return self.cost, self.cost1, self.cost2, self.cost3, self.acc
else:
self.cost2_fix, pred_fix = self._logpred_fix(x, y, task_id, temp = temp) # Fixed mask Log Likelihood
self.cost3 = sum(self.KL_G).div(self.training_size)# IBP KL Divergences
self.cost_fix = self.cost1 - self.cost2_fix + self.cost3# Fixed mask objective to be minimized
self.acc_fix = (y.argmax(dim = -1) == F.softmax(pred_fix, dim = -1).mean(1).argmax(dim = -1)).float().mean()
return self.cost_fix, self.cost1, self.cost2_fix, self.cost3, self.acc_fix
# Done
def _KL_term(self):
### Returns the KL divergence for gaussian prior of parameters
kl = [torch.tensor(0).to(self.device)]
ukm = self.use_kl_masking#self.ukm# To use Prior Masking or Not.
eps = 10e-8
## Calculating KL Divergence for non output layer weights
for i in range(self.no_layers-1):
din = self.size[i]
dout = self.size[i+1]
if(i == self.z_index):
din = din//2
if(ukm):
if(self.kl_mask is None):# If prior mask is not defined
kl_mask = torch.tensor(1.0).to(self.device)
kl_mask_b = torch.tensor(1.0).to(self.device)
else:# If Prior Mask has been defined
# kl_mask = torch.tensor(0*ukm+1*(1-ukm) + 1).float()
# kl_mask_b = torch.tensor(0*ukm + (1-ukm) + 1).float()
kl_mask = torch.tensor(np.float32(self.kl_mask[i])).float()
kl_mask_b = torch.tensor(np.float32(self.kl_mask[i]).max(0)).float()
din_old, dout_old = kl_mask.shape
kl_mask = self.extend_tensor(kl_mask, [din-din_old, dout-dout_old]).to(self.device).view(self.W_m[i].shape)
kl_mask_b = self.extend_tensor(kl_mask_b, [dout-dout_old]).to(self.device).view(self.b_m[i].shape)
else:
kl_mask = torch.tensor(1.0).to(self.device)
kl_mask_b = torch.tensor(1.0).to(self.device)
try:
if(self.use_uniform_prior):
m, v = self.W_m[i]*kl_mask.to(self.device), self.W_v[i]*kl_mask.to(self.device)# Taking Means and logVariaces of parameters
else:
m, v = self.W_m[i], self.W_v[i]# Taking Means and logVariaces of parameters
m0, v0 = (self.prior_W_m[i].to(self.device)*kl_mask), (self.prior_W_v[i].to(self.device)*kl_mask+(1.0*(1-kl_mask)*self.prior_var.to(self.device)))#Prior mean and variance
except:
print(din, dout, din_old, dout_old, self.W_m[i].shape)
# print(v,v0)
const_term = -0.5 * dout * din
log_std_diff = 0.5 * torch.sum((v0.log() - v))
mu_diff_term = 0.5 * torch.sum(((v.exp() + (m0 - m)**2) / v0))
# Adding the current KL Divergence
kl.append(const_term + log_std_diff + mu_diff_term)
## Calculating KL Divergence for non output layer biases
if(self.use_uniform_prior):
m, v = self.b_m[i]*kl_mask.to(self.device), self.b_v[i]*kl_mask.to(self.device)# Taking Means and logVariaces of parameters
else:
m, v = self.b_m[i], self.b_v[i]
m0, v0 = (self.prior_b_m[i].to(self.device)*kl_mask_b), (self.prior_b_v[i].to(self.device)*kl_mask_b + (1.0*(1-kl_mask_b)*self.prior_var.to(self.device)))
const_term = -0.5 * dout
log_std_diff = 0.5 * torch.sum((v0).log() - v)
mu_diff_term = 0.5 * torch.sum((v.exp() + (m0 - m)**2) / (v0))
if(const_term + log_std_diff + mu_diff_term != const_term + log_std_diff + mu_diff_term):
print("error", const_term, log_std_diff, mu_diff_term)
assert 1==2
# Adding the current KL Divergence
kl.append(const_term + log_std_diff + mu_diff_term)
## Calculating KL Divergence for output layer weights
no_tasks = len(self.W_last_m)
din = self.size[-2]
dout = self.size[-1]
for i in range(no_tasks):
## Last Layer weights
m, v = self.W_last_m[i], self.W_last_v[i]
m0, v0 = (self.prior_W_last_m[i]).to(self.device), (self.prior_W_last_v[i]).to(self.device)
const_term = -0.5 * dout * din
log_std_diff = 0.5 * torch.sum(v0.log() - v)
mu_diff_term = 0.5 * torch.sum((v.exp() + (m0 - m)**2) / v0)
kl.append(const_term + log_std_diff + mu_diff_term)
## Last layer Biases
m, v = self.b_last_m[i], self.b_last_v[i]
m0, v0 = (self.prior_b_last_m[i]).to(self.device), (self.prior_b_last_v[i]).to(self.device)
const_term = -0.5 * dout
log_std_diff = 0.5 * torch.sum(v0.log() - v)
mu_diff_term = 0.5 * torch.sum((v.exp() + (m0 - m)**2) / v0)
kl.append(const_term + log_std_diff + mu_diff_term)
return sum(kl)
# Done
def KL_gauss(self, m, v, priors = None):
K, N, dout = m.shape
if(priors is None):
m0 = torch.tensor(0.0).repeat(K, N, dout).to(self.device)
v0 = torch.tensor(1.0).repeat(K, N, dout).to(self.device)
else:
m0, v0 = priors
const_term = -0.5 * dout
log_std_diff = 0.5 * torch.sum(v0.log() - v)
mu_diff_term = 0.5 * torch.sum((v.exp() + (m0 - m)**2) / v0)
return ((const_term + log_std_diff + mu_diff_term)/(K))
# Done
def log_gumb(self, temp, log_alpha, log_sample):
## Returns log probability of gumbel distribution
eps = 10e-8
exp_term = log_alpha + log_sample*(-temp)
log_prob = exp_term + torch.tensor(temp+eps).log() - 2*self.softplus(exp_term)
return log_prob
# Done
def _KL_B(self, l, vs, bs, logit_post, temp = 0.1):
if(temp == 0.1):
assert 1==2
## Calculates the KL Divergence between two Bernoulli distributions
din, dout = self.size[l], self.size[l+1]
eps = 10e-8
if self.reparam_mode is 'gumbsoft':
pis = torch.cumprod(vs, dim=2)# bernoulli prior probabilities : K x din x dout
logit_gis = logit_post# Logit of posterior probabilities : K x din x dout
logit_pis = torch.log(pis+10e-8)# Logit of prior probabilities : K x din x dout
log_sample = (bs+eps).log() - (1-bs+eps).log() # Logit of samples : K x din x dout
tau = temp# Gumbel softmax temperature for varaitonal posterior
## Calculating sample based KL Divergence betweent the two gumbel distribution
b_kl1 = (self.log_gumb(tau,logit_gis,log_sample))# posterior logprob samples : K x din x dout
b_kl2 = (self.log_gumb(self.temp_prior,logit_pis,log_sample))# prior logprob samples : K x din x dout
b_kl = (b_kl1 - b_kl2).mean(0).mean(0).sum()#.div(b_kl1.shape[0])
return b_kl
# Done
def _KL_v(self):
## Calculates the KL Divergence between two Beta distributions
v_kl = []
euler_const = -torch.digamma(torch.tensor(1.0))
for l in range(self.no_layers-1):
alpha, beta = self.alphas[l].to(self.device), self.betas[l].to(self.device)
conc1, conc2 = self.softplus(self._concs1[l]), self.softplus(self._concs2[l])
# conc_sum2 = alpha + beta
# conc_sum1 = conc1 + conc2
eps = 10e-8
a_numpy = alpha.cpu().detach().numpy()
b_numpy = np.ones_like(a_numpy)
v_kl1 = ((conc1 - alpha)/(conc1+eps))*(-euler_const -torch.digamma(conc2) - 1.0/(conc2+eps))
v_kl2 = ((conc1+eps).log() + (conc2+eps).log()) + torch.log(eps + torch.tensor(BETA(a_numpy,b_numpy))).to(self.device)
v_kl3 = -(conc2 - 1)/(conc2+eps)
v_kl4 = torch.tensor(0.0).to(self.device)
# v_kl1 = conc_sum1.lgamma() - (conc1.lgamma()+conc2.lgamma()); #print(v_kl.dtype)
# v_kl2 = -(conc_sum2.lgamma() - (alpha.lgamma()+beta.lgamma()))
# v_kl3 = (conc1-alpha)*(conc1.digamma()-conc_sum1.digamma())
# v_kl4 = (conc2-beta)*(conc2.digamma()-conc_sum1.digamma())
v_kl.append(sum(v_kl1+v_kl2+v_kl3+v_kl4))
ret = torch.sum(sum(v_kl))
if(ret!=ret):
assert 1==2
else:
pass
# print(ret,conc1[0], conc2[0])
return ret
# Done
def _logpred(self, inputs, targets, task_idx, temp = 0.1):
## Returns the log likelihood of model w.r.t the current posterior
eps = 10e-8
pred = torch.sigmoid(self._prediction(inputs, task_idx, self.no_train_samples, temp = temp))# Predicitons for given input and task id : N x K x O
target = targets.unsqueeze(1).repeat(1, self.no_train_samples, 1)# Formating desired output : N x K x O
loss = torch.sum(- target * (pred+eps).log() - (1.0 - target) * (1.0-pred+eps).log() , dim = -1)
log_lik = - (loss).mean()# Binary Crossentropy Loss
return log_lik, pred
# Done
def _logpred_fix(self, inputs, targets, task_idx, temp = 0.1):
## Returns the log likelihood of model w.r.t the current posterior keeping the IBP parameters fixed
eps = 10e-8
pred = torch.sigmoid(self._prediction(inputs, task_idx, self.no_train_samples, const_mask = True, temp = temp))# Predicitons for given input and task id : N x K x O
target = targets.unsqueeze(1).repeat(1, self.no_train_samples, 1)# Formating desired output : N x K x O
loss = torch.sum(- target * (pred+eps).log() - (1.0 - target) * (1.0-pred+eps).log() , dim = -1)
log_lik = - (loss).mean()# Binary Crossentropy Loss
return log_lik, pred
# Done
def adjust_lr(self, optimizer):
with torch.no_grad():
optim = optimizer
for g in optim.param_groups:
g['lr'] = max(g['lr']/1.1, 0.001)
# Done
def assign_optimizer(self, learning_rate=0.01):
## Non different optimizers for all variables togeather
params = list(self.parameters())
normals = []
harders = []
for j,p in enumerate(params):
found = False
list_hard = list(self._p_bers) + list(self._concs1) + list(self._concs2)# + list(self.z_mus) + list(self.z_lvs)
for i in range(len(list_hard)):
if(p is list_hard[i]):
harders.append(j)
found = True
if(not found):
normals.append(j)
# print(normals, harders)
normal_params = [params[p] for p in normals]
harder_params = [params[p] for p in harders]
# print(len(normal_params), len(harder_params))
# assert 1==2
# ls =[p for p in list(self.parameters()) if p not in self._p_bers]
self.opt_all = torch.optim.Adam(normal_params, lr=learning_rate, eps =10e-4, amsgrad = True)
self.opt_all.add_param_group({
'amsgrad': True,
'betas': (0.9, 0.999),
'eps': 1e-08,
'lr': learning_rate*10,
'params':harder_params
})
# Optimizer for training fixed mask model.
# self.opt_all = torch.optim.Adam(self.parameters(), lr=learning_rate)
self.opt_fix = torch.optim.Adam(self.parameters(), lr=learning_rate*0.1, eps =10e-4)
# Done
def prediction(self, x_test, task_idx, const_mask):
# Test model
if const_mask:
prediction = self._prediction(inputs, task_idx, self.no_train_samples, True)
else:
prediction = self._prediction(inputs, task_idx, self.no_train_samples)# Predicitons for given input and task id : N x K x O
return prediction
# Done
def accuracy(self, x_test, y_test, task_id, batch_size =1000):
'''Prints the accuracy of the model for a given input output pairs'''
N = x_test.shape[0]
if batch_size > N:
batch_size = N
costs = []
cur_x_test = x_test
cur_y_test = y_test
total_batch = int(np.ceil(N * 1.0 / batch_size))
avg_acc = 0.
for i in range(total_batch):
start_ind = i*batch_size
end_ind = np.min([(i+1)*batch_size, N])
batch_x = cur_x_test[start_ind:end_ind, :]
batch_y = cur_y_test[start_ind:end_ind, :]