forked from alex04072000/FuSta
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_FuSta.py
459 lines (369 loc) · 23.1 KB
/
run_FuSta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import sys
sys.path.append('core')
import argparse
import os
import cv2
import glob
import numpy as np
import torch
from PIL import Image
from torchvision import transforms
from torchvision.utils import save_image as imwrite
from torch.autograd import Variable
import softsplat
from raft import RAFT
from utils import flow_viz
from utils.utils import InputPadder
import torch.nn.functional as F
import models_arbitrary
DEVICE = 'cuda'
def load_image(imfile):
img = np.array(Image.open(imfile)).astype(np.uint8)
img = torch.from_numpy(img).permute(2, 0, 1).float()
return img
def load_image_list(image_files):
images = []
for imfile in image_files:
images.append(load_image(imfile))
images = torch.stack(images, dim=0)
images = images.to(DEVICE)
padder = InputPadder(images.shape)
return padder.pad(images)[0]
def calc_flow(img1, img2):
with torch.no_grad():
images = load_image_list([img1, img2])
flow_low, flow_up = flow_model(images[0, None], images[1, None], iters=20, test_mode=True)
return flow_up.detach()
backwarp_tenGrid = {}
backwarp_tenPartial = {}
backwarp_tenGrid = {}
def backwarp(tenInput, tenFlow):
if str(tenFlow.shape) not in backwarp_tenGrid:
tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / tenFlow.shape[3]), tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1, tenFlow.shape[2], -1)
tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / tenFlow.shape[2]), tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -1, tenFlow.shape[3])
backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([ tenHor, tenVer ], 1).cuda()
# end
tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1)
return torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=False)
# end
def read_homography(H_path):
xv, yv = np.meshgrid(np.linspace(0, 832 + 2 * 64 - 1, 832 + 2 * 64), np.linspace(0, 448 + 2 * 64 - 1, 448 + 2 * 64))
H_inv = np.load(H_path)
if np.sum(np.abs(H_inv)) == 0.0:
H_inv[0, 0] = 1.0
H_inv[1, 1] = 1.0
H_inv[2, 2] = 1.0
xv_prime = (H_inv[0, 0] * xv + H_inv[0, 1] * yv + H_inv[0, 2]) / (H_inv[2, 0] * xv + H_inv[2, 1] * yv + H_inv[2, 2])
yv_prime = (H_inv[1, 0] * xv + H_inv[1, 1] * yv + H_inv[1, 2]) / (H_inv[2, 0] * xv + H_inv[2, 1] * yv + H_inv[2, 2])
flow = np.stack((xv_prime - xv, yv_prime - yv), -1)
return flow
def read_flo(flo_path):
print(flo_path)
xv, yv = np.meshgrid(np.linspace(-1, 1, 832 + 2 * 64), np.linspace(-1, 1, 448 + 2 * 64))
flow = np.load(flo_path)
flow_u = ((flow[:, :, 0] + xv) + 1.0) / 2.0 * float(832+2*64-1)
flow_v = ((flow[:, :, 1] + yv) + 1.0) / 2.0 * float(448+2*64-1)
flow_u -= ((xv + 1.0) / 2.0 * float(832+2*64-1))
flow_v -= ((yv + 1.0) / 2.0 * float(448+2*64-1))
flow = np.stack((flow_u, flow_v), -1)
return flow
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='AdaCoF-Pytorch')
# parameters
# Model Selection
parser.add_argument('--model', type=str, default='adacofnet')
# Hardware Setting
parser.add_argument('--gpu_id', type=int, default=0)
# Directory Setting
# parser.add_argument('--train', type=str, default='../VideoStabilization/Adobe240/DeepVideoDeblurring_Dataset/DeepVideoDeblurring_Dataset/quantitative_datasets')
# parser.add_argument('--out_dir', type=str, default='./output_adacof_train')
#parser.add_argument('--load', type=str, default='output/checkpoint/model_epoch042.pth')
parser.add_argument('--load', type=str, default='FuSta_model/checkpoint/model_epoch050.pth')
#parser.add_argument('--load', type=str, default='output_pooling_with_mask_decoder_with_mask_softargmax_with_mask/checkpoint/model_epoch049.pth')
# parser.add_argument('--test_input', type=str, default='../VideoStabilization/Adobe240/DeepVideoDeblurring_Dataset/DeepVideoDeblurring_Dataset/quantitative_datasets')
# parser.add_argument('--gt', type=str, default='./test_input/middlebury_others/gt')
# Learning Options
# parser.add_argument('--epochs', type=int, default=50, help='Max Epochs')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
# parser.add_argument('--loss', type=str, default='1*VGG', help='loss function configuration')
# parser.add_argument('--patch_size_h', type=int, default=256, help='Patch size')
# parser.add_argument('--patch_size_w', type=int, default=256, help='Patch size')
# parser.add_argument('--weight_decay', type=float, default=0, help='weight decay')
# Options for AdaCoF
# parser.add_argument('--kernel_size', type=int, default=5)
# parser.add_argument('--dilation', type=int, default=1)
# Options for network
parser.add_argument('--pooling_with_mask', type=int, default=1)
parser.add_argument('--decoder_with_mask', type=int, default=1)
parser.add_argument('--softargmax_with_mask', type=int, default=0)
parser.add_argument('--decoder_with_gated_conv', type=int, default=1)
parser.add_argument('--residual_detail_transfer', type=int, default=1)
parser.add_argument('--beta_learnable', type=int, default=0)
parser.add_argument('--splatting_type', type=str, default='softmax')
# parser.add_argument('--residual_detail_transfer_with_mask', type=int, default=0)
# parser.add_argument('--mask_with_proxy_mask', type=int, default=0)
# parser.add_argument('--max_proxy', type=int, default=0)
parser.add_argument('--concat_proxy', type=int, default=0)
parser.add_argument('--center_residual_detail_transfer', type=int, default=0)
parser.add_argument('--pooling_with_center_bias', type=int, default=1)
parser.add_argument('--pooling_type', type=str, default='CNN_flowError')
parser.add_argument('--no_pooling', type=int, default=0)
parser.add_argument('--single_decoder', type=int, default=0)
parser.add_argument('--noDL_CNNAggregation', type=int, default=0)
parser.add_argument('--gumbel', type=int, default=0)
parser.add_argument('--inference_with_frame_selection', type=int, default=0)
parser.add_argument('--FOV_expansion', type=int, default=1)
parser.add_argument('--seamless', type=int, default=1)
parser.add_argument('--all_backward', type=int, default=0)
parser.add_argument('--bundle_forward_flow', type=int, default=0)
parser.add_argument('--input_frames_path', type=str)
parser.add_argument('--warping_field_path', type=str)
parser.add_argument('--output_path', type=str)
parser.add_argument('--temporal_width', type=int, default=41)
parser.add_argument('--temporal_step', type=int, default=4)
args = parser.parse_args()
model = models_arbitrary.Model(args)
checkpoint = torch.load(args.load)
model.load(checkpoint['state_dict'])
model.eval()
transform = transforms.Compose([transforms.ToTensor()])
# RAFT
flow_model = torch.nn.DataParallel(RAFT(args))
flow_model.load_state_dict(torch.load('raft_models/raft-things.pth'))
flow_model = flow_model.module
flow_model.to('cuda')
flow_model.eval()
INPUT_FRAMES_PATH = args.input_frames_path
CVPR2020_warping_field_path = args.warping_field_path
OUTPUT_PATH = args.output_path
GAUSSIAN_FILTER_KSIZE = args.temporal_width
gaussian_filter = cv2.getGaussianKernel(GAUSSIAN_FILTER_KSIZE, -1)
assert (GAUSSIAN_FILTER_KSIZE-1)//2 % args.temporal_step == 0
with torch.no_grad():
if not os.path.exists(os.path.join(OUTPUT_PATH)):
os.makedirs(os.path.join(OUTPUT_PATH))
all_imgs = sorted(glob.glob(os.path.join(INPUT_FRAMES_PATH, '*.png'))) # all pngs in a sequence
tmp_img = cv2.imread(all_imgs[0])
H = tmp_img.shape[0]
W = tmp_img.shape[1]
# temporal padding frames for Gaussian filter
original_length = len(all_imgs)
assert original_length > 0
first_frame = all_imgs[0]
last_frame = all_imgs[-1]
all_imgs = [first_frame]*(GAUSSIAN_FILTER_KSIZE//2) + all_imgs + [last_frame]*(GAUSSIAN_FILTER_KSIZE//2)
large_mask_chain = []
# delta_x_y = torch.tensor(torch.zeros(original_length, 2), requires_grad=True)
output_frames = []
for idx in range(GAUSSIAN_FILTER_KSIZE//2, (GAUSSIAN_FILTER_KSIZE//2)+original_length):
keyframe = all_imgs[idx]
img_name = os.path.split(keyframe)[-1]
print(img_name)
tenSecond = torch.FloatTensor(np.ascontiguousarray(cv2.imread(filename=keyframe, flags=-1)[..., ::-1].transpose(2, 0, 1)[None, :, :, :].astype(np.float32) * (1.0 / 255.0))).cuda()
# if '00196.png' != img_name:
# continue
"""smoothed_flow_list = []
for frame_shift in range(-(GAUSSIAN_FILTER_KSIZE//2), (GAUSSIAN_FILTER_KSIZE//2)+1):
ref_frame = all_imgs[idx + frame_shift]
ref_frame_name = os.path.split(ref_frame)[-1]
# ref_frame_flow_online = calc_flow(keyframe, ref_frame) # [H, W, 2]
ref_frame_flow = np.load(os.path.join(pre_calculated_flow_path, category_name, avi_name, img_name[:-4]+'_'+ref_frame_name[:-4]+'.npy'))
print(ref_frame_flow.shape)
ref_frame_flow = torch.FloatTensor(np.ascontiguousarray(ref_frame_flow.astype(np.float32))).cuda()
smoothed_flow_list.append(ref_frame_flow * gaussian_filter[frame_shift + GAUSSIAN_FILTER_KSIZE//2, 0])
smoothed_flow = torch.sum(torch.stack(smoothed_flow_list, dim=0), dim=0, keepdim=False)
print(torch.mean(smoothed_flow))"""
if int(img_name[:-4]) == 0:
tenH_inv = torch.zeros((1, 2, 448 + 2 * 64, 832 + 2 * 64)).cuda()
tenFlow = torch.zeros((1, 2, 448 + 2 * 64, 832 + 2 * 64)).cuda()
else:
if os.path.isfile(os.path.join(CVPR2020_warping_field_path, str(int(img_name[:-4])-1).zfill(5)+'_H_inv.npy')) and os.path.isfile(os.path.join(CVPR2020_warping_field_path, str(int(img_name[:-4])-1).zfill(5)+'.npy')):
tenH_inv = torch.FloatTensor(np.ascontiguousarray(read_homography(os.path.join(CVPR2020_warping_field_path, str(int(img_name[:-4])-1).zfill(5)+'_H_inv.npy')).transpose(2, 0, 1)[None, :, :, :])).cuda()
if int(img_name[:-4]) == 1:
tenFlow = torch.zeros((1, 2, 448 + 2 * 64, 832 + 2 * 64)).cuda()
else:
tenFlow = torch.FloatTensor(np.ascontiguousarray(read_flo(os.path.join(CVPR2020_warping_field_path, str(int(img_name[:-4])-1).zfill(5)+'.npy')).transpose(2, 0, 1)[None, :, :, :])).cuda()
else:
print('no flow data')
continue
"""calculate backward flow using inv_H and backward_flow"""
tenBackFlow = backwarp(tenInput=tenH_inv, tenFlow=tenFlow)
totalFlowIn832 = (tenBackFlow+tenFlow)[:, :, 64:-64, 64:-64]
"""second backward warping in full resolution"""
W_ratio = W/(832)
H_ratio = H/(448)
totalFlow = F.upsample(totalFlowIn832, size=(H, W), mode='bilinear')
F_kprime_to_k = torch.stack((totalFlow[:, 0]*W_ratio, totalFlow[:, 1]*H_ratio), dim=1)
sum_color = []
sum_alpha = []
input_frames = []
input_flows = []
forward_flows = []
backward_flows = []
for frame_shift in range(-(GAUSSIAN_FILTER_KSIZE // 2), (GAUSSIAN_FILTER_KSIZE // 2) + 1, int(args.temporal_step)):
# for frame_shift in [-5, 0, 5]:
ref_frame = all_imgs[idx + frame_shift]
ref_frame_name = os.path.split(ref_frame)[-1]
forward_flow = calc_flow(ref_frame, keyframe)
# forward_flow = np.load(os.path.join(pre_calculated_flow_path, avi_name, ref_frame_name[:-4] + '_' + img_name[:-4] + '.npy'))
# forward_flow = torch.FloatTensor(np.ascontiguousarray(forward_flow.astype(np.float32))).cuda()
# somtimes flow encounters nan or very large values
"""forward_flow[forward_flow != forward_flow] = 0
forward_flow[forward_flow > 448] = 0
forward_flow[forward_flow < (-448)] = 0"""
# cut off padding pixels done by RAFT
flow_H = list(forward_flow.size())[2]
flow_W = list(forward_flow.size())[3]
if H != flow_H:
top = (flow_H - H) // 2
forward_flow = forward_flow[:, :, top:top+H]
if W != flow_W:
left = (flow_W - W) // 2
forward_flow = forward_flow[:, :, :, left:left+W]
print(forward_flow.shape)
forward_flows.append(forward_flow)
# forward_flow += smoothed_flow
# input_flows.append(forward_flow)
backward_flow = calc_flow(keyframe, ref_frame)
# backward_flow = np.load(os.path.join(pre_calculated_flow_path, avi_name, img_name[:-4] + '_' + ref_frame_name[:-4] + '.npy'))
# backward_flow = torch.FloatTensor(np.ascontiguousarray(backward_flow.astype(np.float32))).cuda()
"""backward_flow[backward_flow != backward_flow] = 0
backward_flow[backward_flow > 448] = 0
backward_flow[backward_flow < (-448)] = 0"""
backward_flows.append(backward_flow)
input_frames.append(torch.FloatTensor(np.ascontiguousarray(cv2.imread(filename=ref_frame, flags=-1)[..., ::-1].transpose(2, 0, 1)[None, :, :, :].astype(np.float32) * (1.0 / 255.0))).cuda())
if H % 4 == 0:
boundary_cropping_h = 4
else:
boundary_cropping_h = 3
if W % 4 == 0:
boundary_cropping_w = 4
else:
boundary_cropping_w = 3
input_frames = [x[:, :, boundary_cropping_h:-boundary_cropping_h, boundary_cropping_w:-boundary_cropping_w] for x in input_frames]
F_kprime_to_k = F_kprime_to_k[:, :, boundary_cropping_h:-boundary_cropping_h, boundary_cropping_w:-boundary_cropping_w]
forward_flows = [x[:, :, boundary_cropping_h:-boundary_cropping_h, boundary_cropping_w:-boundary_cropping_w] for x in forward_flows]
backward_flows = [x[:, :, boundary_cropping_h:-boundary_cropping_h, boundary_cropping_w:-boundary_cropping_w] for x in backward_flows]
frame_out = model(input_frames, F_kprime_to_k, forward_flows, backward_flows)
"""output_frames.append(frame_out.detach().cpu())"""
# if OOM
if not os.path.exists('tmp/'):
os.makedirs('tmp/')
np.save('tmp/'+str(len(large_mask_chain)).zfill(5), frame_out.detach().cpu().numpy())
output_frames.append('tmp/'+str(len(large_mask_chain)).zfill(5)+'.npy')
"""blending methods"""
WWW = 256
HHH = 256
tenOnes = torch.ones_like(input_frames[0])[:, 0:1, :, :]
tenOnes = torch.nn.ZeroPad2d((WWW, WWW, HHH, HHH))(tenOnes).detach()
F_kprime_to_k_pad = torch.nn.ReplicationPad2d((WWW, WWW, HHH, HHH))(F_kprime_to_k)
tenWarpedFeat = []
tenWarpedMask = []
for iii, feat in enumerate(input_frames):
"""padding for forward warping"""
ref_frame_flow = torch.nn.ReplicationPad2d((WWW, WWW, HHH, HHH))(forward_flows[iii])
"""first forward warping"""
tenMaskFirst = softsplat.FunctionSoftsplat(tenInput=tenOnes, tenFlow=ref_frame_flow, tenMetric=None, strType='average')
"""second backward warping"""
tenMaskSecond = backwarp(tenInput=tenMaskFirst, tenFlow=F_kprime_to_k_pad)
"""back to original resolution"""
tenMask = tenMaskSecond
tenWarpedMask.append(tenMask)
weight_tensor = torch.stack(tenWarpedMask, 0)
output_mask = torch.sum(weight_tensor, dim=0)
output_mask = torch.clamp(output_mask, max=1.0)
# imwrite(output_mask, str(idx-GAUSSIAN_FILTER_KSIZE//2).zfill(5)+'_mask.png', range=(0, 1))
large_mask_chain.append(output_mask.detach().cpu())
# imwrite(frame_out, os.path.join(OUTPUT_PATH, avi_name, img_name), range=(0, 1))
"""loss funstions"""
"""learning_rate = 1e-1
optimizer = torch.optim.RMSprop([delta_x_y], lr=learning_rate)
f = open('loss.csv', 'w+')
for step in range(2000):
data_term = 0.0
fidelity_term = 0.0
print(delta_x_y.detach().numpy())
for iiii in range(len(large_mask_chain)):
expanded_flow = torch.unsqueeze(torch.unsqueeze(torch.unsqueeze(delta_x_y[iiii], 0), 2), 3)
expanded_flow = expanded_flow.repeat(1, 1, list(large_mask_chain[iiii].size())[2], list(large_mask_chain[iiii].size())[3])
# expanded_flow = torch.tile(expanded_flow, (1, 1, list(large_mask_chain[iiii].size())[2], list(large_mask_chain[iiii].size())[3]))
cropped_mask = backwarp(tenInput=large_mask_chain[iiii], tenFlow=expanded_flow.cuda())[:, :, HHH:-HHH, WWW:-WWW]
summed_mask = torch.sum(1.0 - cropped_mask)
data_term += summed_mask
fidelity_term += torch.sum(torch.abs(delta_x_y[iiii]))
smoothness_term = torch.sum(torch.abs(delta_x_y[1:] - delta_x_y[:-1]))
loss = data_term + 1000*fidelity_term + 1000*smoothness_term
f.write(str(data_term)+','+str(fidelity_term)+','+str(smoothness_term)+'\n')
print(data_term)
print(fidelity_term)
print(smoothness_term)
print(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
f.close()"""
WWW -= boundary_cropping_w
HHH -= boundary_cropping_h
from maxflow.fastmin import aexpansion_grid
accumulated_motion_vectors = np.zeros((original_length, 2), np.int32)
maximum_movement = 3
for level in range(5, -1, -1):
# data term / 2^3 level
data_term = np.zeros((original_length, (2*maximum_movement+1) * (2*maximum_movement+1)))
print('data term')
for iiii in range(len(large_mask_chain)):
print(iiii)
for uu in range(-maximum_movement, maximum_movement+1):
print(uu)
for vv in range(-maximum_movement, maximum_movement+1):
# converage term
motion_vector_u = int(accumulated_motion_vectors[iiii, 0]+uu*(2**level))
motion_vector_v = int(accumulated_motion_vectors[iiii, 1]+vv*(2**level))
#expanded_flow = torch.unsqueeze(torch.unsqueeze(torch.unsqueeze(torch.from_numpy(np.array([accumulated_motion_vectors[iiii, 0]+uu*(2**level), accumulated_motion_vectors[iiii, 1]+vv*(2**level)])), 0), 2), 3)
#expanded_flow = expanded_flow.repeat(1, 1, list(large_mask_chain[iiii].size())[2], list(large_mask_chain[iiii].size())[3])
#cropped_mask = backwarp(tenInput=large_mask_chain[iiii].double(), tenFlow=expanded_flow.double().cuda())[:, :, HHH:-HHH, WWW:-WWW]
cropped_mask = large_mask_chain[iiii][:, :, HHH+motion_vector_u:-HHH+motion_vector_u, WWW+motion_vector_v:-WWW+motion_vector_v]
# cropped_mask = backwarp(tenInput=large_mask_chain[iiii], tenFlow=expanded_flow.cuda())
# imwrite(cropped_mask, str(uu)+'_'+str(vv)+'_mask.png', range=(0, 1))
summed_mask = (torch.sum(1.0 - cropped_mask)).cpu().numpy()
# fidelity term
# data_term[iiii, (uu+maximum_movement)*(2*maximum_movement+1)+vv+maximum_movement] = 10.0*(np.abs(uu) + np.abs(vv))*(2**level) + summed_mask
data_term[iiii, (uu+maximum_movement)*(2*maximum_movement+1)+vv+maximum_movement] = summed_mask
print('smoothness term')
smoothness_term = np.zeros(((2*maximum_movement+1) * (2*maximum_movement+1), (2*maximum_movement+1) * (2*maximum_movement+1)))
for uu in range(-maximum_movement, maximum_movement+1):
print(uu)
for vv in range(-maximum_movement, maximum_movement+1):
print(vv)
for uuuu in range(-maximum_movement, maximum_movement+1):
for vvvv in range(-maximum_movement, maximum_movement+1):
smoothness_term[(uu+maximum_movement)*(2*maximum_movement+1)+vv+maximum_movement, (uuuu+maximum_movement)*(2*maximum_movement+1)+vvvv+maximum_movement] = (((uu-uuuu)*(2**level))**2 + ((vv-vvvv)*(2**level))**2)
alpha = 100.0
labels = aexpansion_grid(data_term,smoothness_term*alpha) # [H, W]
for iiii in range(labels.shape[0]):
accumulated_motion_vectors[iiii, 0] += (labels[iiii]//(2*maximum_movement+1) - maximum_movement)*(2**level)
accumulated_motion_vectors[iiii, 1] += (labels[iiii]%(2*maximum_movement+1) - maximum_movement)*(2**level)
print(accumulated_motion_vectors)
print(accumulated_motion_vectors)
np.savetxt("motion_vector.csv", accumulated_motion_vectors, delimiter=",")
loss = 0.0
for iiii in range(len(large_mask_chain)):
motion_vector_u = int(accumulated_motion_vectors[iiii, 0])
motion_vector_v = int(accumulated_motion_vectors[iiii, 1])
cropped_mask = large_mask_chain[iiii][:, :, HHH+motion_vector_u:-HHH+motion_vector_u, WWW+motion_vector_v:-WWW+motion_vector_v]
print(motion_vector_u)
print(motion_vector_v)
print(cropped_mask.shape)
"""imwrite(output_frames[iiii][:, :, HHH+motion_vector_u:-HHH+motion_vector_u, WWW+motion_vector_v:-WWW+motion_vector_v], os.path.join(OUTPUT_PATH, avi_name, str(iiii+1).zfill(5)+'.png'), range=(0, 1))"""
# if OOM
imwrite(torch.from_numpy(np.load(output_frames[iiii]))[:, :, HHH+motion_vector_u:-HHH+motion_vector_u, WWW+motion_vector_v:-WWW+motion_vector_v], os.path.join(OUTPUT_PATH, str(iiii+1).zfill(5)+'.png'), range=(0, 1))
summed_mask = (torch.sum(1.0 - cropped_mask)).cpu().numpy()
loss += summed_mask
print(loss)
# loss without adjustment
loss = 0.0
for iiii in range(len(large_mask_chain)):
cropped_mask = large_mask_chain[iiii][:, :, HHH:-HHH, WWW:-WWW]
summed_mask = (torch.sum(1.0 - cropped_mask)).cpu().numpy()
loss += summed_mask
print(loss)