forked from fnoble/Plot-o-matic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariables.py
241 lines (194 loc) · 7.45 KB
/
variables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from enthought.traits.api import HasTraits, Int, Float, Bool, Dict, List, Property, Enum, Color, Instance, Str, Any, on_trait_change, Event, Button, BaseStr
from enthought.traits.ui.api import View, Item, ValueEditor, TabularEditor, HSplit, TextEditor
from enthought.traits.ui.tabular_adapter import TabularAdapter
import time
import math, numpy
import cPickle as pickle
expression_context = {}
expression_context.update(numpy.__dict__)
def update_context(context):
expression_context.update(context)
class VariableTableAdapter(TabularAdapter):
columns = [('Variable name', 0), ('Value', 1)]
class Variables(HasTraits):
vars_pool = {}
vars_list = List()
vars_table_list = List() # a list version of vars_pool maintained for the TabularEditor
vars_table_list_update_time = Float(0)
sample_number = Int(0)
sample_count = Int(0)
max_samples = Int(20000)
start_time = time.time()
add_var_event = Event()
expressions = List()
vars_table_update = Bool(True)
clear_button = Button('Clear')
view = View(
HSplit(
Item(name = 'clear_button', show_label = False),
Item(name = 'max_samples', label = 'Max samples'),
Item(name = 'sample_count', label = 'Samples'),
Item(name = 'vars_table_update', label = 'Update variables view')
),
Item(
name = 'vars_table_list',
editor = TabularEditor(
adapter = VariableTableAdapter(),
editable = False,
dclicked = "add_var_event"
),
resizable = True,
show_label = False
),
title = 'Variable view',
resizable = True,
width = .7,
height = .2
)
def new_expression(self, expr):
new_expression = Expression(self, expr)
self.expressions.append(new_expression)
return new_expression
def update_variables(self, data_dict):
"""
Receive a dict of variables from a decoder and integrate them
into our global variable pool.
"""
self.sample_number += 1
# We update into a new dict rather than vars_pool due to pythons pass by reference
# behaviour, we need a fresh object to put on our array
new_vars_pool = {}
new_vars_pool.update(self.vars_pool)
new_vars_pool.update(data_dict)
new_vars_pool.update({'sample_num': self.sample_number, 'system_time': time.time(), 'time': time.time() - self.start_time})
if '' in new_vars_pool:
del new_vars_pool[''] # weed out undesirables
self.vars_list.append(new_vars_pool)
self.update_vars_list()
def update_vars_list(self):
self.vars_pool = self.vars_list[-1]
if time.time() - self.vars_table_list_update_time > 0.2:
self.vars_table_list_update_time = time.time()
self.update_vars_table()
self.sample_count = len(self.vars_list)
if self.sample_count > self.max_samples:
self.vars_list = self.vars_list[-self.max_samples:]
self.sample_count = self.max_samples
@on_trait_change('clear_button')
def clear(self):
""" Clear all recorded data. """
self.sample_number = 0
self.vars_list = [{}]
self.update_vars_list()
self.update_vars_table()
self.start_time = time.time()
for expression in self.expressions:
expression.clear_cache()
def save_data_set(self, filename):
fp = open(filename, 'wb')
pickle.dump(self.vars_list, fp, True)
fp.close()
def open_data_set(self, filename):
fp = open(filename, 'rb')
self.vars_list = pickle.load(fp)
fp.close()
self.update_vars_list()
self.update_vars_table()
self.sample_number = self.sample_count
# spoof start time so that we start where we left off
self.start_time = time.time() - self.vars_list[-1]['time']
def update_vars_table(self):
if self.vars_table_update:
vars_list_unsorted = [(name, repr(val)) for (name, val) in list(self.vars_pool.iteritems())]
self.vars_table_list = sorted(vars_list_unsorted, key=(lambda x: x[0].lower()))
def test_expr(self, expr):
is_ok = (True, '')
try:
eval(expr, expression_context, self.vars_pool)
except Exception as e:
is_ok = (False, repr(e))
return is_ok
def _eval_expr(self, expr, vars_pool=None):
"""
Returns the value of a python expression evaluated with
the variables in the pool in scope. Used internally by
Expression. Users should use Expression instead as it
has caching etc.
"""
if vars_pool == None:
vars_pool = self.vars_pool
try:
data = eval(expr, expression_context, vars_pool)
except:
data = None
return data
def bound_array(self, first, last):
if first < 0:
first += self.sample_number
if first < 0:
first = 0
if last and last < 0:
last += self.sample_number
if last == None:
last = self.sample_number
return (first, last)
def _get_array(self, expr, first=0, last=None):
"""
Returns an array of tuples containing the all the values of an
the supplied expression and the sample numbers and times corresponding to
these values. Used internally by Expression, users should use Expression
directly as it has caching etc.
"""
first, last = self.bound_array(first, last)
vars_list_offset = self.sample_number - self.sample_count
if expr in self.vars_pool:
data = [vs.get(expr) for vs in self.vars_list[first-vars_list_offset:last-vars_list_offset]]
else:
data = [self._eval_expr(expr, vs) for vs in self.vars_list[first-vars_list_offset:last-vars_list_offset]]
data = [0.0 if d is None else d for d in data]
data_array = numpy.array(data)
return data_array
class ExpressionString(BaseStr):
default_value = ''
def validate(self, object, name, value):
value = BaseStr.validate(self, object, name, value)
is_ok, self.info_text = object._vars.test_expr(value)
if is_ok:
return value
#self.error(object, name, value)
return value
class Expression(HasTraits):
_vars = Instance(Variables)
_expr = ExpressionString('')
_data_array_cache = None
_data_array_cache_index = Int(0)
view = View(
Item('_expr', show_label = False, editor=TextEditor(enter_set=True, auto_set=False))
)
def __init__(self, variables, expr, **kwargs):
HasTraits.__init__(self, **kwargs)
self._vars = variables
self.set_expr(expr)
def set_expr(self, expr):
if self._expr != expr:
self._expr = expr
def __expr_changed(self):
self.clear_cache()
def clear_cache(self):
self._data_array_cache = numpy.array([])
self._data_array_cache_index = 0
def get_curr_value(self):
return self._vars._eval_expr(self._expr)
def get_array(self, first=0, last=None):
first, last = self._vars.bound_array(first, last)
if last > self._data_array_cache_index:
#print "Cache miss of", (last - self._data_array_cache_index)
new_data = self._vars._get_array(self._expr, self._data_array_cache_index, last)
new_shape = list(new_data.shape)
new_shape[0] = -1 # -1 lets the first index resize appropriately for the data length
self._data_array_cache = numpy.append(self._data_array_cache, new_data)
self._data_array_cache.shape = new_shape
self._data_array_cache_index = last
# use the global max_samples to limit our cache size
self._data_array_cache = self._data_array_cache[-self._vars.max_samples:]
return self._data_array_cache[first:last]