-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvca4_iterateGui.m
388 lines (320 loc) · 14.7 KB
/
svca4_iterateGui.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
function varargout = svca4_iterateGui(varargin)
% SVCA4_ITERATEGUI MATLAB code for svca4_iterateGui.fig
% SVCA4_ITERATEGUI, by itself, creates a new SVCA4_ITERATEGUI or raises the existing
% singleton*.
%
% H = SVCA4_ITERATEGUI returns the handle to a new SVCA4_ITERATEGUI or the handle to
% the existing singleton*.
%
% SVCA4_ITERATEGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SVCA4_ITERATEGUI.M with the given input arguments.
%
% SVCA4_ITERATEGUI('Property','Value',...) creates a new SVCA4_ITERATEGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before svca4_iterateGui_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to svca4_iterateGui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help svca4_iterateGui
% Last Modified by GUIDE v2.5 16-Jan-2017 12:05:36
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @svca4_iterateGui_OpeningFcn, ...
'gui_OutputFcn', @svca4_iterateGui_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before svca4_iterateGui is made visible.
function svca4_iterateGui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to svca4_iterateGui (see VARARGIN)
% Choose default command line output for svca4_iterateGui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes svca4_iterateGui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = svca4_iterateGui_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
function it_num_Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function it_num_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function it_weight_Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function it_weight_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in iterate.
function iterate_Callback(hObject, eventdata, handles)
global svca4
num_its = str2num(handles.it_num.String);
q = str2num(handles.it_weight.String);
for its = 1:num_its % for each iteration
fprintf('* Iteration %d\n',its)
fprintf('Calculating CLASS TACs. Please wait ...\n');
clear TAC_TABLE
ifeedback=its-1;
for fi=svca4.classIDs % for each target subject
%%% load brain mask %%%
MASK_struct = load_nii(fullfile(svca4.MASK_dir, svca4.MASK_list{fi}));
MASK = single(MASK_struct.img);
clear MASK_struct
%%% load PET image %%%
PET_struct = load_nii(fullfile(svca4.PET_dir, svca4.PET_list{fi}));
PET = single(PET_struct.img);
svca4.Res = PET_struct.hdr.dime.pixdim([2 4 3]); %
xDim = size(PET,1);
yDim = size(PET,2);
zDim = size(PET,3);
clear PET_struct;
%%%% Normalizing dPET scan
indMASK = find(MASK==1);
PET_norm = zeros(xDim,yDim,zDim,svca4.nFrames);
for t=1:svca4.nFrames
PET_t = PET(:,:,:,t);
vals = PET_t(indMASK) - mean(PET_t(indMASK));
if std(vals(:)) ~= 0
vals = vals/std(vals(:));
end
PET_t_norm = PET_norm(:,:,:,t);
PET_t_norm(indMASK) = vals;
PET_norm(:,:,:,t) = PET_t_norm;
end
%%% Blood class %%%
isBLOOD = any(svca4.BLOOD_sel==fi);
if isBLOOD
if its == 1
fname = sprintf('%s/weights/%s_BLOOD_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, ifeedback);
else fname = sprintf('%s/weights/%s_BLOOD_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,ifeedback);
end
BLOOD = load_nii(fname);
BLOOD = BLOOD.img;
BLOOD = BLOOD.*MASK;
quant_BLOOD = quantile(BLOOD(BLOOD~=0),q);
BLOODMASK = single(zeros(size(MASK)));
BLOODMASK(BLOOD>quant_BLOOD) = 1;
BM4D = repmat(BLOODMASK, [1 1 1 numel(svca4.BLOOD_frames)]);
firstFrames = PET_norm(:,:,:,svca4.BLOOD_frames).*single(BM4D);
vox_tm_max = max(firstFrames, [], 4);
BLOOD = zeros(1,svca4.nFrames); % BLOOD on normalized image
for j=1:svca4.BLOOD_num_pixels
[~, ind] = max(vox_tm_max(:));
[indx, indy, indz] = ind2sub([xDim yDim zDim], ind);
BLOOD = BLOOD + squeeze(PET_norm(indx,indy,indz,1:svca4.nFrames))';
vox_tm_max(indx, indy, indz) = 0;
end
TAC_TABLE(fi,3,1:svca4.nFrames) = squeeze(BLOOD/svca4.BLOOD_num_pixels);
end
%%% GM/WM classes %%%
isGMWM = any(svca4.GMWM_sel==fi);
if isGMWM
if its == 1
fname = sprintf('%s/weights/%s_GRAY_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, ifeedback);
else fname = sprintf('%s/weights/%s_GRAY_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,ifeedback);
end
GRAY = load_nii(fname);
GRAY = GRAY.img;
GRAY = GRAY.*MASK;
quant_GRAY = quantile(GRAY(GRAY~=0),q);
GM = single(zeros(size(MASK)));
GM(GRAY>quant_GRAY) = 1;
if its == 1
fname = sprintf('%s/weights/%s_WHITE_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, ifeedback);
else fname = sprintf('%s/weights/%s_WHITE_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,ifeedback);
end
WHITE = load_nii(fname);
WHITE = WHITE.img;
WHITE = WHITE.*MASK;
quant_WHITE = quantile(WHITE(WHITE~=0),q);
WM = single(zeros(size(MASK)));
WM(WHITE>quant_WHITE) = 1;
for t=1:svca4.nFrames
% GM
tmp = single(MASK).*single(GM).*PET_norm(:,:,:,t);
TAC_TABLE(fi,1,t) = mean(tmp(tmp~=0));
% WM
tmp = single(MASK).*single(WM).*PET_norm(:,:,:,t);
TAC_TABLE(fi,2,t) = mean(tmp(tmp~=0));
end
end
%%% TSPO class %%%
isINF = any(svca4.TSPO_sel==fi);
if isINF
if its == 1
fname = sprintf('%s/weights/%s_TSPO_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, ifeedback);
else fname = sprintf('%s/weights/%s_TSPO_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,ifeedback);
end
TSPO = load_nii(fname);
TSPO = TSPO.img;
TSPO = TSPO.*MASK;
quant_TSPO = quantile(TSPO(TSPO~=0),q);
INF = single(zeros(size(MASK)));
INF(TSPO>quant_TSPO) = 1;
for t=1:svca4.nFrames
tmp = single(INF).*PET_norm(:,:,:,t);
TAC_TABLE(fi,4,t) = mean(tmp(tmp~=0));
end
end
end % loops target subjects
% save iterated TAC_TABLE to svca4 structure
svca4.(sprintf('TAC_TABLE_q%d_it%.2d',q*100,its)) = TAC_TABLE;
figure; set(gcf,'color','white')
plot(svca4.PET_standardEndTimes,mean(squeeze(TAC_TABLE(svca4.BLOOD_sel,1,:))),'-b','LineWidth',2); hold on
plot(svca4.PET_standardEndTimes,mean(squeeze(TAC_TABLE(svca4.GMWM_sel,2,:))),'-g','LineWidth',2)
plot(svca4.PET_standardEndTimes,mean(squeeze(TAC_TABLE(svca4.GMWM_sel,3,:))),'-r','LineWidth',2)
plot(svca4.PET_standardEndTimes,mean(squeeze(TAC_TABLE(svca4.TSPO_sel,4,:))),'-k','LineWidth',2)
title(['Iteration ' num2str(its)])
legend('Grey','White','Blood','TSPO')
xlabel('Time (sec)')
ylabel('normalized kBq/ml')
set(gca,'FontSize',14)
print(gcf,sprintf('%s/figs/classes_q%d_it%.2d.png', svca4.outputPath, q*100,its),'-dpng')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Supervised Cluster Analysis %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for fi=svca4.classIDs % for each target subject
% exclude target from TAC
GMWM_sel = svca4.GMWM_sel; GMWM_sel(svca4.GMWM_sel==fi) = [];
BLOOD_sel = svca4.BLOOD_sel; BLOOD_sel(svca4.BLOOD_sel==fi) = [];
TSPO_sel = svca4.TSPO_sel; TSPO_sel(svca4.TSPO_sel==fi) = [];
% Get Classes from TAC_TABLE : GRAY WHITE BLOOD TSPO
CLASS(:,1) = nanmean(squeeze(TAC_TABLE(GMWM_sel,1,:)),1);
CLASS(:,2) = nanmean(squeeze(TAC_TABLE(GMWM_sel,2,:)),1);
CLASS(:,3) = nanmean(squeeze(TAC_TABLE(BLOOD_sel,3,:)),1);
CLASS(:,4) = nanmean(squeeze(TAC_TABLE(TSPO_sel,4,:)),1);
CLASS(isnan(CLASS)) = 0; % this might not be the best approach but the regression cannot have NaNs
%%% load brain mask %%%
MASK_struct = load_nii(fullfile(svca4.MASK_dir, svca4.MASK_list{fi}));
MASK = single(MASK_struct.img);
clear MASK_struct
%%% load target image %%%
TARGET_struct = load_nii(fullfile(svca4.PET_dir, svca4.PET_list{fi}));
TARGET = single(TARGET_struct.img);
xDim = size(TARGET,1);
yDim = size(TARGET,2);
zDim = size(TARGET,3);
clear TARGET_struct
%%% normalizing dPET target %%%
indMASK = find(MASK==1);
PET_norm = zeros(xDim,yDim,zDim,svca4.nFrames);
for t=1:svca4.nFrames
PET_t = TARGET(:,:,:,t);
vals = PET_t(indMASK) - mean(PET_t(indMASK));
if std(vals(:)) ~= 0
vals = vals/std(vals(:));
end
PET_t_norm = PET_norm(:,:,:,t);
PET_t_norm(indMASK) = vals;
PET_norm(:,:,:,t) = PET_t_norm;
end
% Fitting kinetic classes
fprintf('Fitting kinetic classes. Please wait ...\n');
% initializing parametric maps
GRAY = zeros(size(MASK));
WHITE = GRAY; BLOOD = GRAY; TSPO = GRAY;
% vectorizing target for speed
PET_vector = reshape(PET_norm, xDim*yDim*zDim, svca4.nFrames);
for j = 1:size(PET_vector,1);
if MASK(j) > 0
TAC = squeeze(PET_vector(j,:)');
TAC(isnan(TAC)) = 0;
% fitting
par = lsqnonneg(CLASS,TAC);
% filling parametric maps
GRAY(j) = par(1);
WHITE(j) = par(2);
BLOOD(j) = par(3);
TSPO(j) = par(4);
end
end
%%% Save parametric maps %%%
% NB: there is a L/R flip for the data needed but I'm not sure it
% always will be!!!
OUT_struct = load_nii(sprintf('%s/%s', svca4.MRI_dir, svca4.MRI_list{fi}));
OUT_struct.img = [];
fprintf('* Saving parametric maps for Target %d ...\n',fi);
fname = sprintf('%s/weights/%s_GRAY_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,its);
OUT_struct.img = single(flip(GRAY));
save_nii(OUT_struct, fname);
fname = sprintf('%s/weights/%s_WHITE_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,its);
OUT_struct.img = single(flip(WHITE));
save_nii(OUT_struct, fname);
fname = sprintf('%s/weights/%s_BLOOD_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,its);
OUT_struct.img = single(flip(BLOOD));
save_nii(OUT_struct, fname);
fname = sprintf('%s/weights/%s_TSPO_q%d_it%.2d.nii', svca4.outputPath, svca4.Names{fi}, q*100,its);
OUT_struct.img = single(flip(TSPO));
save_nii(OUT_struct, fname);
end
end
clear grey white blood tspo
leg = cell(1,num_its+1);
leg{1} = 'it0';
for its = 1:num_its % for each iteration
ifeedback=its+1;
grey(its,:) = eval(sprintf('mean(squeeze(svca4.classes_q%d_it%.2d(svca4.GMWM_sel,1,:)))',q*100,its));
white(its,:) = eval(sprintf('mean(squeeze(svca4.classes_q%d_it%.2d(svca4.GMWM_sel,2,:)))',q*100,its));
blood(its,:) = eval(sprintf('mean(squeeze(svca4.classes_q%d_it%.2d(svca4.BLOOD_sel,3,:)))',q*100,its));
tspo(its,:) = eval(sprintf('mean(squeeze(svca4.classes_q%d_it%.2d(svca4.TSPO_sel,4,:)))',q*100,its));
leg{ifeedback} = sprintf('it%d',its);
end
grey = [mean(squeeze(svca4.classes_it00(svca4.GMWM_sel,1,:))); grey ];
white = [mean(squeeze(svca4.classes_it00(svca4.GMWM_sel,2,:))); white ];
blood = [mean(squeeze(svca4.classes_it00(svca4.BLOOD_sel,3,:))); blood ];
tspo = [mean(squeeze(svca4.classes_it00(svca4.TSPO_sel,4,:))); tspo ];
figure; set(gcf,'color','white')
plot(svca4.PET_standardEndTimes,grey,'LineWidth',2);
title('Grey')
legend(leg)
xlabel('Time (sec)')
ylabel('normalized kBq/ml')
set(gca,'FontSize',14)
print(gcf,sprintf('%s/figs/grey_q%d_its%d.png', svca4.outputPath, q*100,num_its),'-dpng')
figure; set(gcf,'color','white')
plot(svca4.PET_standardEndTimes,white,'LineWidth',2);
title('White')
legend(leg)
xlabel('Time (sec)')
ylabel('normalized kBq/ml')
set(gca,'FontSize',14)
print(gcf,sprintf('%s/figs/white_q%d_its%d.png', svca4.outputPath, q*100,num_its),'-dpng')
figure; set(gcf,'color','white')
plot(svca4.PET_standardEndTimes,blood,'LineWidth',2);
title('Blood')
legend(leg)
xlabel('Time (sec)')
ylabel('normalized kBq/ml')
set(gca,'FontSize',14)
print(gcf,sprintf('%s/figs/blood_q%d_its%d.png', svca4.outputPath, q*100,num_its),'-dpng')
figure; set(gcf,'color','white')
plot(svca4.PET_standardEndTimes,tspo,'LineWidth',2);
title('TSPO')
legend(leg)
xlabel('Time (sec)')
ylabel('normalized kBq/ml')
set(gca,'FontSize',14)
print(gcf,sprintf('%s/figs/tspo_q%d_its%d.png', svca4.outputPath, q*100,num_its),'-dpng')
%
uisave({'svca4'}, 'svca4.mat')