-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.cu
351 lines (310 loc) · 12.4 KB
/
runner.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#include <vector>
#include <random>
#include <algorithm>
#include <functional>
#include <iostream>
#include <chrono>
//#include "Eigen/dense"
#include "sim.cuh"
static void HandleError(cudaError_t err,
const char *file,
int line)
{
if (err != cudaSuccess) {
printf("%s in %s at line %d\n", cudaGetErrorString( err ),
file, line);
exit(EXIT_FAILURE);
}
}
#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))
const int X_SZ = 2048;
const int Y_SZ = 2048;
const float RANGE = 32;
const int natoms = 10000;
/* Check capability of the GPU (should be done for each card to be used) */
void printDeviceCheck()
{
int ngpus;
cudaGetDeviceCount(&ngpus);
std::vector<cudaDeviceProp> gpuprops(ngpus);
// second argument is gpu number
for (int i = 0; i < ngpus; ++i) {
cudaGetDeviceProperties(&gpuprops[i], i);
}
// check results
std::cout <<
"--------------------------------------------------------------------------------"
<< std::endl;
std::cout << "Devices: " << std::endl;
bool is_fermi = true;
bool has_uva = true;
for (int i = 0; i < ngpus; ++i) {
std::cout << " " <<
gpuprops[i].name << " " <<
gpuprops[i].major << " " <<
gpuprops[i].unifiedAddressing <<
gpuprops[i].pciBusID << " " <<
gpuprops[i].pciDeviceID << std::endl;
is_fermi &= (gpuprops[i].major >= 2); // must be fermi or newer
has_uva &= (gpuprops[i].unifiedAddressing);
}
// TODO: only works for ngpus == 2
int access1from0;
int access0from1;
cudaDeviceCanAccessPeer(&access1from0, 1, 0);
cudaDeviceCanAccessPeer(&access0from1, 0, 1);
bool same_complex = (access1from0 && access0from1);
std::cout << "Peer access: " << std::endl <<
" access 1 from 0: " << access1from0 << std::endl <<
" access 0 from 1: " << access0from1 << std::endl;
std::cout << "General info: " << std::endl <<
" num devices? " << ngpus << std::endl <<
" is fermi? " << is_fermi << std::endl <<
" has uva? " << has_uva << std::endl <<
" same complex? " << same_complex << std::endl;
std::cout <<
"--------------------------------------------------------------------------------"
<< std::endl;
}
int run(int ngpus_in, int nt)
{
//constexpr int X_NBINS = X_SZ / RANGE + 1;
//constexpr int Y_NBINS = Y_SZ / RANGE + 1;
//Grid grid = new Grid(X_NBINS, Y_NBINS);
int ngpus;
cudaGetDeviceCount(&ngpus);
if (ngpus_in < ngpus) { ngpus = ngpus_in; }
// random initial values for atoms
std::random_device rd;
std::mt19937 mt_rand(rd());
std::mt19937::result_type x_seed = time(0);
auto x_rand = std::bind(
std::uniform_real_distribution<float>(0, X_SZ),
std::mt19937(1));
std::mt19937::result_type y_seed = time(0);
auto y_rand = std::bind(
std::uniform_real_distribution<float>(0, Y_SZ),
std::mt19937(2));
std::mt19937::result_type val_seed = time(0);
auto val_rand = std::bind(
std::uniform_real_distribution<float>(0, 1),
std::mt19937(3));
// create atoms and store them in the grid
std::array<float4, natoms> atoms;
for (int i = 0; i < natoms; ++i) {
atoms[i].x = x_rand();
atoms[i].y = y_rand();
atoms[i].z = val_rand();
//grid.record_atom(atoms[atoms.size() - 1]);
}
std::sort(atoms.begin(), atoms.end(), [](float4 a, float4 b) {
return a.y < b.y;
});
int atoms_off = 0;
std::vector<int> cutlo(ngpus, 0);
std::vector<int> atoms_split(ngpus, natoms);
std::vector<int> atoms_width(ngpus, natoms);
std::vector<int> cuthi(ngpus, natoms);
for (int i = 0; i < ngpus; ++i) {
for (int j = 0; j < natoms; ++j) {
if (atoms[j].y > Y_SZ/ngpus * (i+1)) {
atoms_split[i] = j;
atoms_width[i] = j;
break;
}
}
}
for (int i = 1; i < ngpus; ++i) {
atoms_width[i] -= atoms_width[i-1];
}
for (int i = 0; i < ngpus; ++i) {
for (int j = 0; j < natoms; ++j) {
if (atoms[j].y > (Y_SZ/ngpus - RANGE) * (i+1)) {
cutlo[i] = j;
break;
}
}
}
for (int i = 0; i < ngpus; ++i) {
for (int j = 0; j < natoms; ++j) {
if (atoms[j].y > (Y_SZ/ngpus + RANGE) * (i+1)) {
cuthi[i] = j;
break;
}
}
}
for (int i = 0; i < ngpus; ++i) {
std::cout << "gpu id: " << i+1 <<
" cutlo: " << cutlo[i] <<
" split: " << atoms_split[i] <<
" cuthi: " << cuthi[i] << std::endl;
}
std::vector<float4 *> atoms_old_dev(ngpus);
std::vector<float4 *> atoms_new_dev(ngpus);
for (int i = 0; i < ngpus; ++i) {
cudaSetDevice(i);
// new vals: before timestepping, current vals always in here
HANDLE_ERROR( cudaMalloc((void **)&atoms_new_dev[i],
atoms_width[i] * sizeof(float4)) );
HANDLE_ERROR( cudaMemcpy((void *)atoms_new_dev[i],
(void *)(atoms.data() + atoms_off),
atoms_width[i] * sizeof(float4),
cudaMemcpyHostToDevice) );
// malloc space for old vals
HANDLE_ERROR( cudaMalloc((void **)&atoms_old_dev[i],
atoms_width[i] * sizeof(float4)) );
HANDLE_ERROR( cudaMemcpy((void *)atoms_old_dev[i],
(void *)(atoms.data() + atoms_off),
atoms_width[i] * sizeof(float4),
cudaMemcpyHostToDevice) );
atoms_off += atoms_width[i];
}
std::vector<float4 *> ghost_lo_dev(ngpus-1);
std::vector<float4 *> ghost_hi_dev(ngpus-1);
for (int i = 0; i < ngpus-1; ++i) { // don't need last split, always end
// ghost vals
cudaSetDevice(i + 1); // next proc gets lo ghosts
HANDLE_ERROR( cudaMalloc((void **)&ghost_lo_dev[i],
(atoms_split[i] - cutlo[i]) * sizeof(float4)) );
HANDLE_ERROR( cudaMemcpy((void *)ghost_lo_dev[i],
(void *)(atoms.data() + cutlo[i]),
(atoms_split[i] - cutlo[i]) * sizeof(float4),
cudaMemcpyHostToDevice) );
cudaSetDevice(i); // this proc gets hi ghosts
HANDLE_ERROR( cudaMalloc((void **)&ghost_hi_dev[i],
(cuthi[i] - atoms_split[i]) * sizeof(float4)) );
HANDLE_ERROR( cudaMemcpy((void *)ghost_hi_dev[i],
(void *)(atoms.data() + atoms_split[i]),
(cuthi[i] - atoms_split[i]) * sizeof(float4),
cudaMemcpyHostToDevice) );
}
// timestep
//int x_cell = 0;
//int y_cell = 0;
std::cout << "num timesteps: " << nt << std::endl;
for (int i = 0; i < natoms; i += natoms/10) {
std::cout << atoms[i].x << " " <<
atoms[i].y << " " <<
atoms[i].z << std::endl;
}
float4 *needs_lo;
int needs_lo_sz;
float4 *needs_hi;
int needs_hi_sz;
float4 *atoms_tmp_dev;
for (int t = 0; t < nt; ++t) {
for (int i = 0; i < ngpus; ++i) {
cudaSetDevice(i);
//if (t % 10000 == 0) { std::cout << t << std::endl; }
// figure out what our needed ghosts are
if (i == 0) {
needs_lo = NULL;
needs_lo_sz = 0;
} else {
needs_lo = ghost_lo_dev[i-1];
needs_lo_sz = atoms_split[i-1] - cutlo[i-1];
}
if (i == ngpus-1) {
needs_hi = NULL;
needs_hi_sz = 0;
} else {
needs_hi = ghost_hi_dev[i];
needs_hi_sz = cuthi[i] - atoms_split[i];
}
// swap old and new pointers
atoms_tmp_dev = atoms_new_dev[i];
atoms_new_dev[i] = atoms_old_dev[i];
atoms_old_dev[i] = atoms_tmp_dev;
// run sim
timestep<<<atoms_width[i], 1>>>(
atoms_width[i], RANGE,
atoms_old_dev[i], atoms_new_dev[i],
needs_lo, needs_lo_sz,
needs_hi, needs_hi_sz);
cudaDeviceSynchronize();
// update ghosts
if (i != 0) {
int ghost_lo_sz = atoms_split[i-1] - cutlo[i-1];
if (ghost_lo_sz != 0) { // i != ngpus-1
HANDLE_ERROR(
cudaMemcpy(
(void *)ghost_lo_dev[i-1],
(void *)(atoms_new_dev[i-1] +
(atoms_width[i-1] - ghost_lo_sz)),
ghost_lo_sz * sizeof(float4),
cudaMemcpyDeviceToDevice) );
}
int ghost_hi_sz = cuthi[i-1] - atoms_split[i-1];
if (cuthi[i-1] - atoms_split[i-1] != 0) { // i != 0
HANDLE_ERROR(
cudaMemcpy(
(void *)ghost_hi_dev[i-1],
(void *)(atoms_new_dev[i]),
ghost_hi_sz * sizeof(float4),
cudaMemcpyDeviceToDevice) );
}
}
}
/*
for (auto atom: atoms) {
grid.get_cell_by_atom(atom, x_cell, y_cell);
for (int x_off = -1; x_off <= 1; ++x_off) {
for (int y_off = -1; y_off <= 1; ++y_off) {
vector<int> neighbors = grid.get_atoms_in_cell(
x_cell + x_off,
y_cell + y_off);
if (x_off != 0 && y_off != 0) {
neighbors
*/
}
/*
timestep<<<atoms_width[i], 1>>>(
atoms_width[i], RANGE,
atoms_new_dev[i], atoms_old_dev[i],
ghost_lo_dev[i], atoms_split[i] - cutlo[i],
ghost_hi_dev[i], cuthi[i] - atoms_split[i]);
*/
atoms_off = 0;
for (int i = 0; i < ngpus; ++i) {
cudaSetDevice(i);
HANDLE_ERROR( cudaMemcpy((void *)(atoms.data() + atoms_off),
(void *)atoms_new_dev[i],
atoms_width[i] * sizeof(float4),
cudaMemcpyDeviceToHost) );
atoms_off += atoms_width[i];
}
std::cout << "results: " << std::endl;
for (int i = 0; i < natoms; i += natoms/10) {
std::cout << atoms[i].x << " " <<
atoms[i].y << " " <<
atoms[i].z << " " <<
atoms[i].w << std::endl;
}
for (int i = 0; i < ngpus; ++i) {
cudaFree((void *)atoms_old_dev[i]);
cudaFree((void *)atoms_new_dev[i]);
}
return 0;
}
int main()
{
printDeviceCheck();
std::chrono::time_point<std::chrono::steady_clock> two_start, two_end;
two_start = std::chrono::steady_clock::now();
run(2, 10);
two_end = std::chrono::steady_clock::now();
std::chrono::duration<double> two_dur = two_end - two_start;
std::cout <<
"--------------------------------------------------------------------------------"
<< std::endl;
std::chrono::time_point<std::chrono::steady_clock> one_start, one_end;
one_start = std::chrono::steady_clock::now();
run(1, 10);
one_end = std::chrono::steady_clock::now();
std::chrono::duration<double> one_dur = one_end - one_start;
std::cout <<
"--------------------------------------------------------------------------------"
<< std::endl;
std::cout << "one took: " << one_dur.count() << " seconds; " << std::endl;
std::cout << "two took: " << two_dur.count() << " seconds; " << std::endl;
}