-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgradientDescentMulti.m
36 lines (25 loc) · 949 Bytes
/
gradientDescentMulti.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
% GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
n = length(theta); % number of thetas
tempTheta = zeros(n,1);
for iter = 1:num_iters
for j=1:n
sum = 0;
for i=1:m
currentX = X(i,:)';
h = theta'*currentX;
diff = h-y(i);
sum = sum + diff * X(i,j);
end
tempTheta(j)=theta(j)-alpha/m*sum;
end
theta = tempTheta;
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
end