-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpro1.9.py
108 lines (75 loc) · 3.38 KB
/
pro1.9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 7 16:30:19 2018
@author: Jui Shah
"""
#Road-detection from a traffic video-cam feed
import numpy as np
import cv2
import matplotlib.pyplot as plt
cap = cv2.VideoCapture('roadvideo2Trim.mp4')
while(cap.isOpened()):
#frame by frame of video
ret, image = cap.read()
#creating empty image of same size
height, width, no_use = image.shape
empty_img = np.zeros((height, width), np.uint8)
#APPLIED K-MEANS CLUSTERING
Z = image.reshape((-1,3))
# convert to np.float32
Z = np.float32(Z)
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 6
ret,label,center=cv2.kmeans(Z,K,None,criteria,15,cv2.KMEANS_RANDOM_CENTERS)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((image.shape))
#CONVERTED TO A LUV IMAGE AND MADE EMPTY IMAGE, A MASK
blur = cv2.GaussianBlur(res2,(15,15),0)
gray = cv2.cvtColor(blur,cv2.COLOR_RGB2GRAY)
LUV = cv2.cvtColor(blur,cv2.COLOR_RGB2LUV)
l = LUV[:,:,0]
v1 = l>80
v2 = l<150
value_final = v1 & v2
empty_img[value_final] = 255
empty_img[LUV[:,:100,:]] = 0
#APPLIED BITWISE-AND ON GRAYSCALE IMAGE AND EMPTY IMAGE TO OBTAIN ROAD AND SOME-OTHER IMAGES TOO
final = cv2.bitwise_and(gray,empty_img)
final, contours, hierchary = cv2.findContours(final, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
final = cv2.drawContours(final, contours, -1, 0, 3)
#FURTHER MASKED THE FINAL IMAGE TO OBTAIN ONLY THE ROAD PARTICLES
final_masked = np.zeros((height, width), np.uint8)
v1 = final >=91
v2 = final <=130
#v3 = final == 78
final_masked[v1 & v2] = 255
#APPLIED EROSION,CONTOURS AND TOP-HAT TO REDUCE NOISE
kernel = np.ones((3,3),np.uint8)
final_eroded = cv2.erode(final_masked,kernel,iterations=1)
final_eroded, contours, hierchary = cv2.findContours(final_eroded, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
final_masked = cv2.drawContours(final_eroded, contours, -1, 0, 3)
final_waste = cv2.morphologyEx(final_masked,cv2.MORPH_TOPHAT,kernel, iterations = 2)
final_waste = cv2.bitwise_not(final_waste)
final_masked = cv2.bitwise_and(final_waste,final_masked)
#MADE A LINE ON THE LEFT-BOTTOM OF THE PAGE
final_masked = cv2.line(final_masked,(40,height),(400,height),255,100)
#final_masked = cv2.line(final_masked,(width-300,height),(width,height),255,70)
#USED FLOOD-FILL TO FILL IN THE SMALL BLACK LANES
final_flood = final_masked.copy()
h, w = final_masked.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
cv2.floodFill(final_flood,mask,(0,0),255)
final_flood = cv2.bitwise_not(final_flood)
final_filled= cv2.bitwise_or(final_masked,final_flood)
#final_blurred = cv2.GaussianBlur(final_filled,(5,5),0)
cv2.namedWindow('original', cv2.WINDOW_NORMAL)
cv2.imshow('original',image)
cv2.namedWindow('tried_extraction', cv2.WINDOW_NORMAL)
cv2.imshow('tried_extraction',final_filled)
if cv2.waitKey(1) & 0xFF == ord('s'):
break
cap.release()
cv2.destroyAllWindows()