forked from multiobjectiveDSE/MultiObjectiveDSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsklearn_DKL_GP.py
89 lines (80 loc) · 3.42 KB
/
sklearn_DKL_GP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import torch
from sklearn.gaussian_process.kernels import Matern, Hyperparameter
from sklearn.neural_network import MLPRegressor
from ANN_model import Loss_Fun, MLP_Predictor
class LargeFeatureExtractor(torch.nn.Sequential):
def __init__(self):
super(LargeFeatureExtractor, self).__init__()
data_dim = 8
self.output_dim = 2
self.add_module('linear1', torch.nn.Linear(data_dim, 1000))
self.add_module('relu1', torch.nn.ReLU())
self.add_module('linear2', torch.nn.Linear(1000, 500))
self.add_module('relu2', torch.nn.ReLU())
self.add_module('linear3', torch.nn.Linear(500, 50))
self.add_module('relu3', torch.nn.ReLU())
self.add_module('linear4', torch.nn.Linear(50, self.output_dim))
class Sklearn_DKL_GP(Matern):
def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5):
# print(f"debugging Sklearn_DKL_GP init length_scale={length_scale}")
super().__init__(length_scale=length_scale, length_scale_bounds=length_scale_bounds, nu=nu)
self.mlp_layers = 3
self.train_flag = False
self.use_sklearn_mlp = False
if self.use_sklearn_mlp:
self.mlp = MLPRegressor(hidden_layer_sizes=(10, 1),
max_iter=2,
solver='sgd', # ['adam', 'sgd', 'lbfgs'],
activation='relu',
)
else:
self.mlp = MLP_Predictor(
in_channel=8
, out_channel=1
, drop_rate=0.01, use_bias=True, use_drop=False
, initial_lr=0.001
, momentum=0.4
, loss_fun=torch.nn.MSELoss() # Loss_Fun()
)
'''
@property
def hyperparameter_mlp_weight(self):
return Hyperparameter("mlp_weight", "numeric", self.mlp_weight_bounds)
'''
def __call__(self, X, Y=None, eval_gradient=False):
if self.use_sklearn_mlp:
x_mlp = self.mlp.predict(X)
else:
x_mlp = self.mlp.predict(torch.Tensor(X)).detach().numpy()
#print(f"x_mlp={x_mlp}")
if Y is None:
y_mlp = None
else:
y_mlp = self.mlp.predict(torch.Tensor(Y)).detach().numpy()
if eval_gradient:
K, K_gradient = super().__call__(x_mlp, y_mlp, eval_gradient=eval_gradient)
# print(f"debugging Sklearn_DKL_GP X size= {np.shape(X)} x_mlp size ={np.shape(x_mlp)}")
# print(f"K_gradient {K_gradient}")
return K, K_gradient
else:
K = super().__call__(x_mlp, y_mlp, eval_gradient=eval_gradient)
return K
def __repr__(self):
if self.anisotropic:
return "{0}(length_scale=[{1}], nu={2:.3g}, mlp_layers={3})".format(
self.__class__.__name__,
", ".join(map("{0:.3g}".format, self.length_scale)),
self.nu,
self.mlp_layers,
)
else:
return "{0}(length_scale={1:.3g}, nu={2:.3g}, mlp_layers={3} train_flag={4})".format(
self.__class__.__name__, np.ravel(self.length_scale)[0], self.nu, self.mlp_layers, self.train_flag
)
def my_train(self, X, X_value):
if self.use_sklearn_mlp:
self.mlp.fit(X, X_value)
else:
self.mlp.my_train(X, X_value)
self.train_flag = True