-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhelperFunctions.py
93 lines (85 loc) · 5.41 KB
/
helperFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
###########################################################################################################
## Customized describe function
## Reference: Feature Engineering Technique, link: https://github.com/sharmapratik88/AIML-Projects
import collections, pandas as pd, numpy as np, matplotlib.pyplot as plt, seaborn as sns
def custom_describe(df):
results = []
for col in df.select_dtypes(include = ['float64', 'int64']).columns.tolist():
stats = collections.OrderedDict({'': col, 'Count': df[col].count(),
'Type': df[col].dtype,
'Mean': round(df[col].mean(), 2),
'StandardDeviation': round(df[col].std(), 2),
#'Variance': round(df[col].var(), 2),
'Minimum': round(df[col].min(), 2),
'Q1': round(df[col].quantile(0.25), 2),
'Median': round(df[col].median(), 2),
'Q3': round(df[col].quantile(0.75), 2),
'Maximum': round(df[col].max(), 2),
#'Range': round(df[col].max(), 2)-round(df[col].min(), 2),
'IQR': round(df[col].quantile(0.75), 2)-round(df[col].quantile(0.25), 2),
#'Kurtosis': round(df[col].kurt(), 2),
'Skewness': round(df[col].skew(), 2),
#'MeanAbsoluteDeviation': round(df[col].mad(), 2)
})
if df[col].skew() < -1:
if df[col].median() < df[col].mean(): ske = 'Highly Skewed (Right)'
else: ske = 'Highly Skewed (Left)'
elif -1 <= df[col].skew() <= -0.5:
if df[col].median() < df[col].mean(): ske = 'Moderately Skewed (Right)'
else: ske = 'Moderately Skewed (Left)'
elif -0.5 < df[col].skew() <= 0:
if df[col].median() < df[col].mean(): ske = 'Fairly Symmetrical (Right)'
else: ske = 'Fairly Symmetrical (Left)'
elif 0 < df[col].skew() <= 0.5:
if df[col].median() < df[col].mean(): ske = 'Fairly Symmetrical (Right)'
else: ske = 'Fairly Symmetrical (Left)'
elif 0.5 < df[col].skew() <= 1:
if df[col].median() < df[col].mean(): ske = 'Moderately Skewed (Right)'
else: ske = 'Moderately Skewed (Left)'
elif df[col].skew() > 1:
if df[col].median() < df[col].mean(): ske = 'Highly Skewed (Right)'
else: ske = 'Highly Skewed (Left)'
else: ske = 'Error'
stats['SkewnessComment'] = ske
upper_lim, lower_lim = stats['Q3'] + (1.5 * stats['IQR']), stats['Q1'] - (1.5 * stats['IQR'])
if len([x for x in df[col] if x < lower_lim or x > upper_lim])>1: out = 'HasOutliers'
else: out = 'NoOutliers'
stats['OutliersComment'] = out
results.append(stats)
statistics = pd.DataFrame(results).set_index('')
return statistics
###########################################################################################################
###########################################################################################################
## Functions that will help us with EDA plot
## Reference: Ensemble Techniques, link: https://github.com/sharmapratik88/AIML-Projects
from scipy import stats; from scipy.stats import zscore, norm, randint
def odp_plots(df, col):
f,(ax1, ax2, ax3) = plt.subplots(1, 3, figsize = (15, 7.2))
# Boxplot to check outliers
sns.boxplot(x = col, data = df, ax = ax1, orient = 'v', color = 'darkslategrey')
# Distribution plot with outliers
sns.distplot(df[col], ax = ax2, color = 'teal', fit = norm).set_title('Distribution of\n{}\nwith outliers'.format(col))
# Removing outliers, but in a new dataframe
upperbound, lowerbound = np.percentile(df[col], [1, 99])
y = pd.DataFrame(np.clip(df[col], upperbound, lowerbound))
# Distribution plot without outliers
sns.distplot(y[col], ax = ax3, color = 'tab:orange', fit = norm).set_title('Distribution of\n{}\nwithout outliers'.format(col))
kwargs = {'fontsize':14, 'color':'black'}
ax1.set_title(col + '\nBoxplot Analysis', **kwargs)
ax1.set_xlabel('Box', **kwargs)
ax1.set_ylabel(col + ' Values', **kwargs)
f.tight_layout()
return plt.show()
###########################################################################################################
###########################################################################################################
## Functions to plot given column against target values (0 & 1s)
def target_plot(df, col, target):
fig = plt.figure(figsize = (15, 7.2))
# Distribution for 'PPI' - doesn't have a PPI product, considering outliers
ax = fig.add_subplot(121)
sns.distplot(df[(df[target] == 0)][col], color = 'c', ax = ax).set_title(f'{col.capitalize()} don\'t a PPI Product')
# Distribution for 'PPI' - have a PPI product, considering outliers
ax= fig.add_subplot(122)
sns.distplot(df[(df[target] == 1)][col], color = 'b', ax = ax).set_title(f'{col.capitalize()} have a PPI Product')
return plt.show()
###########################################################################################################