-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_gpt2.py
131 lines (117 loc) · 4.7 KB
/
main_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import time
import os
import numpy as np
import tensorflow as tf
from absl import app
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import tensorflow_server_pb2
from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import input as input_ops
from tensorflow.python.training import queue_runner_impl
from tensorflow.python.training import server_lib
import train_runner
from train_flags import FLAGS
from pprint import pprint as pp
from model_fns import gpt2_model, gpt2_rev_model
from input_fns import gpt2_input
import json
def parseval(value, dtype, default=None):
if dtype == 'str' or isinstance(default, str):
pass
elif dtype == 'int' or isinstance(default, int):
value = int(value)
elif dtype == 'float' or isinstance(default, float):
value = float(value)
elif dtype == 'bool' or isinstance(default, bool):
if value == '1' or value.lower() == 'true':
value = True
else:
value = False
else:
assert dtype is not None
value = dtype(value)
return value
def getval(name, default, dtype=None):
if name.upper() in os.environ:
value = os.environ[name.upper()]
value = parseval(value, dtype=dtype, default=default)
tf.logging.info('getval(%s, %s) = os.environ[%s] = %s', repr(name), repr(default), repr(name.upper()), repr(value))
else:
value = params.get(name, default)
tf.logging.info('getval(%s, %s) = params[%s] = %s', repr(name), repr(default), repr(name), repr(value))
return value
def main(unused_argv):
global params
#FLAGS.iterations_per_loop = 100
#params = {'batch_size': FLAGS.train_batch_size}
#params = {'batch_size': 128, 'use_tpu': True, 'precision': 'float32'}
with open(FLAGS.params) as f:
params = json.load(f)
params['use_tpu'] = getval('use_tpu', True)
params['batch_per_core'] = getval('batch_per_core', 1)
params['iterations'] = getval('iterations', 20)
params['batch_size'] = FLAGS.num_cores * params['batch_per_core']
params['n_ctx'] = getval('n_ctx', 1024)
params['n_embd'] = getval('n_embd', 768)
params['n_head'] = getval('n_head', 12)
params['n_layer'] = getval('n_layer', 12)
params['n_vocab'] = getval('n_vocab', 50257)
params['opt_name'] = getval('opt_name', 'adam')
params['beta1'] = getval('beta1', 0.9)
params['beta2'] = getval('beta2', 0.999)
params['epsilon'] = getval('epsilon', 1e-9)
params['lr'] = getval('lr', 0.00025)
FLAGS.train_batch_size = params['batch_size']
FLAGS.iterations_per_loop = params['iterations']
FLAGS.train_steps = getval('train_steps', int(2e6))
params['precision'] = getval('precision', 'float32')
params['model'] = getval('model', 'GPT2')
assert params['model'] in ['GPT2', 'GPT2Rev']
model = gpt2_rev_model if params['model'] == 'GPT2Rev' else gpt2_model
pp(params)
trunner = train_runner.TrainRunner(
iterations=FLAGS.iterations_per_loop, train_steps=FLAGS.train_steps)
def input_fn(params):
tokens = [[_ for _ in range(0, 1024)]] * params['batch_size']
labels = [[_ for _ in range(1, 1025)]] * params['batch_size']
t = tf.broadcast_to(tokens, [len(tokens), len(tokens[0])])
l = tf.broadcast_to(labels, [len(labels), len(labels[0])])
#dset1 = tf.data.Dataset.from_tensor_slices(t);
#dset2 = tf.data.Dataset.from_tensor_slices(l);
dset1 = tf.data.Dataset.from_tensors(t);
dset2 = tf.data.Dataset.from_tensors(l);
dset = tf.data.Dataset.zip((dset1, dset2))
dset = dset.repeat()
return dset
def create_train_op(loss, params):
return tf.identity(loss)
def model_fn(features, labels, mode, params):
pp(['features', features])
pp(['labels', labels])
pp(['mode', mode])
pp(['params', params])
loss = tf.constant(0.0)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = create_train_op(loss, params)
if params['use_tpu']:
return tf.contrib.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
trunner.initialize(gpt2_input, model, params)
tf.logging.info('trunner.initialize(): Done. Training...')
trunner.train()
tf.logging.info('trunner.train(): Done. Shutting down...')
trunner.shutdown()
tf.logging.info('trunner.shutdown(): Done.')
if __name__ == "__main__":
app.run(main)