-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtf_timeline.py
166 lines (139 loc) · 5.17 KB
/
tf_timeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# https://www.tensorflow.org/guide/data_performance#reproducing_the_figures
"""
This dataset provides samples of shape [[2, 1], [2, 2], [2, 3]] and of type [tf.dtypes.string, tf.dtypes.float32, tf.dtypes.int32]. Each sample is:
(
[("Open"), ("Read")],
[(t0, d), (t0, d)],
[(i, e, -1), (i, e, s)]
)
Where:
Open and Read are steps identifiers
t0 is the timestamp when the corresponding step started
d is the time spent in the corresponding step
i is the instance index
e is the epoch index (number of times the dataset has been iterated)
s is the sample index
"""
import itertools
from collections import OrderedDict, defaultdict
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import time
def now():
return time.perf_counter()
def wait(secs):
t0 = now()
time.sleep(secs)
return t0, secs
class OrderedDefaultDict(OrderedDict):
def __init__(self, default_factory=None, *args, **kwargs):
#in python3 you can omit the args to super
super(OrderedDefaultDict, self).__init__(*args, **kwargs)
self.default_factory = default_factory
def __missing__(self, key):
self[key] = value = self.default_factory()
return value
class TimelineStep:
def __init__(self):
self.times = []
self.values = []
def add(self, time_start, time_spent, instance_index=0, epoch_index=0, sample_index=-1):
self.times += [(time_start, time_spent)]
self.values += [(instance_index, epoch_index, sample_index)]
class Timeline:
def __init__(self):
self.steps = OrderedDefaultDict(default_factory=lambda: TimelineStep())
def add(self, step_name, time_start, time_spent, instance_index=0, epoch_index=0, sample_index=-1):
self.steps[step_name].add(time_start=time_start, time_spent=time_spent, instance_index=instance_index, epoch_index=epoch_index, sample_index=sample_index)
def get_timeline(self):
steps = []
times = []
values = []
for step, ts in self.steps.items():
step = step.encode('utf8')
for t, v in zip(ts.times, ts.values):
steps += [tuple([step])]
times += [t]
values += [v]
return {'steps': steps, 'times': times, 'values': values}
def test_timeline():
tim = Timeline()
t0 = now()
for i in range(10):
t = t0 + 2*i
for phase in 'Open Read Map Train'.split():
d = np.random.uniform()
tim.add(phase, t, d, i); t += d
return tim
def make_test_timeline():
i = 0
e = 0
s = 0
# tl = (
# [("Open"), ("Read")],
# [(t0, d), (t0, d)],
# [(i, e, -1), (i, e, s)]
# )
t0 = now()
time.sleep(0.3)
d = now() - t0
steps += [("Open")]
times += [(t0, d)]
values += [(i, e, -1)]
time.sleep(0.1)
t0 = now()
time.sleep(0.3)
d = now() - t0
steps += [("Read")]
times += [(t0, d)]
values += [(i, e, s)]
return {'steps': steps, 'times': times, 'values': values}
def draw_timeline(timeline, title, width=0.5, annotate=False, save=False):
# convert to numpy
timeline['steps'] = np.array(timeline['steps'], dtype=np.bytes_)
timeline['times'] = np.array(timeline['times'], dtype=np.float32)
timeline['values'] = np.array(timeline['values'], dtype=np.int32)
# Remove invalid entries (negative times, or empty steps) from the timelines
invalid_mask = np.logical_and(timeline['times'] > 0, timeline['steps'] != b'')[:,0]
steps = timeline['steps'][invalid_mask]
times = timeline['times'][invalid_mask]
values = timeline['values'][invalid_mask]
# Get a set of different steps, ordered by the first time they are encountered
step_ids, indices = np.stack(np.unique(steps, return_index=True))
step_ids = step_ids[np.argsort(indices)]
# Shift the starting time to 0 and compute the maximal time value
min_time = times[:,0].min()
times[:,0] = (times[:,0] - min_time)
end = max(width, (times[:,0]+times[:,1]).max() + 0.01)
cmap = mpl.cm.get_cmap("plasma")
plt.close()
fig, axs = plt.subplots(len(step_ids), sharex=True, gridspec_kw={'hspace': 0})
fig.suptitle(title)
fig.set_size_inches(17.0, len(step_ids))
plt.xlim(-0.01, end)
for i, step in enumerate(step_ids):
step_name = step.decode()
ax = axs[i]
ax.set_ylabel(step_name)
ax.set_ylim(0, 1)
ax.set_yticks([])
ax.set_xlabel("time (s)")
ax.set_xticklabels([])
ax.grid(which="both", axis="x", color="k", linestyle=":")
# Get timings and annotation for the given step
entries_mask = np.squeeze(steps==step)
serie = np.unique(times[entries_mask], axis=0)
annotations = values[entries_mask]
ax.broken_barh(serie, (0, 1), color=cmap(i / len(step_ids)), linewidth=1, alpha=0.66)
if annotate:
for j, (start, width) in enumerate(serie):
annotation = "\n".join([f"{l}: {v}" for l,v in zip(("i", "e", "s"), annotations[j])])
ax.text(start + 0.001 + (0.001 * (j % 2)), 0.55 - (0.1 * (j % 2)), annotation,
horizontalalignment='left', verticalalignment='center')
if save:
plt.savefig(title.lower().translate(str.maketrans(" ", "_")) + ".svg")
if __name__ == '__main__':
tim = test_timeline()
draw_timeline(tim.get_timeline(), 'test');
plt.show()