-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
executable file
·192 lines (158 loc) · 6.72 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python
import argparse as ap
import os
from os import path
import importlib
import json
import numpy as np
from sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score, RepeatedStratifiedKFold
import time
ALGORITHMS_DIR = 'algorithms'
ALGORITHMS = [path.splitext(f)[0]
for f in os.listdir(ALGORITHMS_DIR)
if path.isfile(path.join(ALGORITHMS_DIR, f))]
DATA_SETS = ['orl', 'mnist']
def import_data_sets(data_set):
if data_set == 'all':
return [importlib.import_module(ds) for ds in DATA_SETS]
if data_set not in DATA_SETS:
msg = 'Unknown data set "%s"!' % data_set
raise ap.ArgumentTypeError(msg)
return [importlib.import_module(data_set)]
def import_algorithms(algorithm):
if algorithm == 'all':
return [importlib.import_module(f'algorithms.{al}') for al in ALGORITHMS]
if algorithm in ALGORITHMS:
return [importlib.import_module(f'algorithms.{algorithm}')]
algorithms = []
names = algorithm.split(',')
for name in algorithm.split(','):
if name not in ALGORITHMS:
msg = 'Unknown algorithm "%s"!' % name
raise ap.ArgumentTypeError(msg)
module = importlib.import_module(f'algorithms.{name}')
algorithms.append(module)
return algorithms
def get_result_path(subdir, classifier_name, data_set_name, with_pca):
pca_suffix = 'with_pca' if with_pca else 'without_pca'
file_name = '%s_%s_%s.json' % (classifier_name, data_set_name, pca_suffix)
return os.path.join(subdir, file_name)
def write_json(obj, file_path):
with open(file_path, 'w') as file:
json.dump(obj, file, sort_keys=False, indent=4, separators=(',', ': '))
def fetch_best_params(classifier_name, data_set_name, with_pca):
file_path = get_result_path('params', classifier_name, data_set_name, with_pca)
if not os.path.exists(file_path):
err_msg = 'Path "%s" does not exist. Run ./hypertune.py first.' % file_path
raise ValueError(err_msg)
with open(file_path, 'r') as file:
return json.load(file)['best_params']
def run_benchmark(algo, data_set, pca_components, n_folds, random_state, n_repeats, n_jobs):
start_time = time.time()
classifier_name = algo.__name__.replace('algorithms.', '')
data_set_name = data_set.__name__
print(f'Benchmarking {classifier_name} on {data_set_name} (PCA={pca_components})')
print('Loading %s...' % data_set_name)
X_train, X_test, y_train, y_test = data_set.load_data()
X = np.concatenate((X_train, X_test))
y = np.concatenate((y_train, y_test))
use_pca = pca_components is not None
if pca_components is not None:
print('Applying PCA...')
pca = PCA(n_components=pca_components)
X = pca.fit_transform(X, y)
best_params = fetch_best_params(classifier_name, data_set_name, use_pca)
print(best_params)
kfold = RepeatedStratifiedKFold(
n_splits=n_folds,
random_state=random_state,
n_repeats=n_repeats
)
classifier = algo.get_classifier()
classifier.set_params(**best_params)
print('X={} y={}'.format(X.shape, y.shape))
if classifier_name in ['pmse', 'pback']:
n_jobs = 2 # TODO: Avoid memory issues.
final_scores = cross_val_score(
classifier, X, y, n_jobs=n_jobs, cv=kfold, scoring='accuracy', verbose=2
)
print(final_scores)
exec_time_sec = (time.time() - start_time)
benchmark_results = {
'algorithm': classifier_name,
'data_set': data_set_name,
'pca': use_pca,
'params': best_params,
'execution_time_sec': exec_time_sec,
'n_jobs': n_jobs,
'scores_summary': {
'min': final_scores.min(),
'mean': final_scores.mean(),
'max': final_scores.max(),
'variance': final_scores.var(ddof=1),
'std': final_scores.std(ddof=1),
},
'scores': list(final_scores)
}
pca_suffix = f'pca{pca_components}' if use_pca else 'original'
file_name = '%s_%s_%s.json' % (data_set_name, pca_suffix, classifier_name)
file_path = os.path.join('benchmark_results', file_name)
write_json(benchmark_results, file_path)
def parse_args():
parser = ap.ArgumentParser(
description='Benchmarks the different classifiers.')
parser.add_argument('--random-state', '-r',
required=False,
type=int,
default=42,
help='Random state for consistent results.')
parser.add_argument('--folds', '-k',
required=False,
type=int,
default=3,
help='Number of folds or splits used in the k-fold cross validation.')
parser.add_argument('--repeats', '-n',
required=False,
type=int,
default=33,
help='Number of times to repeat the cross-validation.')
parser.add_argument('--threads', '-t',
required=False,
type=int,
default=-1,
help='Number of threads to utilise. For all available threads use -1.')
parser.add_argument('--data-sets', '-d',
required=False,
type=import_data_sets,
default='all',
help=f'Supported values: all, {", ".join(DATA_SETS)}.')
parser.add_argument('--algorithms', '-a',
required=False,
type=import_algorithms,
default='all',
help=f'Supported values: all, {", ".join(ALGORITHMS)}.')
parser.add_argument('--pca', '-p',
required=False,
type=str,
default='all',
help=f'Supported values: all, original, 2d.')
return parser.parse_args()
def main():
args = parse_args()
n_folds = args.folds
random_state = args.random_state
n_repeats = args.repeats
n_jobs = args.threads
print('Benchmark starting...')
for ds in args.data_sets:
for algorithm in args.algorithms:
if args.pca in ['all', '2d']:
run_benchmark(algo=algorithm, data_set=ds, pca_components=2, n_folds=n_folds,
random_state=random_state, n_repeats=n_repeats, n_jobs=n_jobs)
if args.pca in ['all', 'original']:
run_benchmark(algo=algorithm, data_set=ds, pca_components=None, n_folds=n_folds,
random_state=random_state, n_repeats=n_repeats, n_jobs=n_jobs)
print('Benchmark done!')
if __name__ == '__main__':
main()