-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy patheto.py
1063 lines (859 loc) · 36.3 KB
/
eto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Penman-Monteith Equation implementation in Python.
Full implementation of Penman-Monteith ETo equation based on UAN-FAO
[Irrigation and Drainage Paper 56](http://www.fao.org/3/X0490E/x0490e00.htm)
Penman-Monteith equation is used to calculate reference crop evapotranspiration (ETo)
for a given location using available climate data. This method provides many ways of estimating
missing climate data using minimal data.
Homepage of the project: https://github.com/sherzodr/penmon
"""
import math
import datetime as dt
import warnings
CHECK_RADIATION_RANGE = True
CHECK_SUNSHINE_HOURS_RANGE = True
def is_number(s):
try:
float(s)
return True
except ValueError:
return False
class Station:
""" Class that implements a weather station at a known latitude and elevation."""
def __init__(self, latitude, longitude, altitude, anemometer_height=2, timezone_longitude=345):
"""
Required parameters:
:param latitude: latitude of the location in decimal format. For southern
hemisphere negative number must be used
:type latitude: float
:param altitude: altitude (elevation) of the location in meters
:type altitude: int
:param anemometer_height=2: height of the anemometer (wind-speed)
measuring device
:type anemometer_height: int
:param timezone_longitude=345 (degrees west of greenwhich, here set for UTC+1)
Following are additional attributes that you can get/set on this station
after instantiation:
* latitude_rad - latitude in radian, alculated based on latitude
* days - dictionary of days recorded (or calculated) by this station
* climate - set to default **Climate()** instance
* ref_crop - instance of **Crop** class, which sets default chracteristics
of the reference crop according to the paper.
Should you wish to change assumes Climate and Crop characteristics
you can do so after the object is innitialized, like so:
station=Station(41.42, 109)
station.ref_crop = Crop(albedo=0.25, height=0.35)
"""
if not type(latitude) is float:
raise TypeError("latitude must be a float")
if not type(longitude) is float:
raise TypeError("longitude must be a float")
if latitude < -90.0 or latitude > 90.0:
raise Exception("latitude must be between -90.0 and 90.0")
if longitude < 0 or longitude > 360.0:
raise Exception("longitude in degrees West of Greenwhich.")
if not type(altitude) is int:
raise TypeError("altitude must be an integer")
if altitude < 0:
raise Exception("'altitude' must be above 0")
if (timezone_longitude < 0) or (timezone_longitude>359):
raise Exception("'timezone_longitude in degrees West of Greenwhich.")
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.latitude_rad = round((math.pi / 180 * self.latitude), 3)
self.longitude_rad = round((math.pi / 180 * self.longitude), 3)
warnings.warn('timezone_longitude (longitude of center of local timezone) is set to 345° (for UTC+1). If location changes updating is necessary!')
self.timezone_longitude = 345 # degrees west of greenwhich
self.days = {}
self.hours = {}
# setting default parameters for the station
self.anemometer_height = anemometer_height
self.climate = Climate()
self.ref_crop = Crop()
def day_entry(self, day_number, date_template="%Y-%m-%d",
temp_min=None,
temp_max=None,
temp_mean=None,
wind_speed=None,
humidity_mean=None,
radiation_s=None,
sunshine_hours=None
):
"""
Given a day number (integer type from 1-366) returns a **StationDay*** instance for
that day. Logs the day in *days* attribute of the **Station()** class.
If it receives a string it expects it to be in "yyyy-mm-dd" format, in which case
it parses the string into **datetime** and calculates day number
If your date format is different than assumed, you can adjust *date_template*
as the second parameter. For example, following all three lines are identical
day = station.day_entry(229)
day = station.day_entry("2020-08-16")
day = station.day_entry('08/16/2020', '%m/%d/%Y')
You can pass the following named-parameters to the method:
- temp_min
- temp_max
- wind_speed
- radiation_s
- sunshine_hours
If *radiation_s* and *sunshine_hours* is out of range for this location
for this date (based on solar declination, sun-distance and daylight hours)
raises ValueError exception.
"""
if type(day_number) is str:
try:
dt1 = dt.datetime.strptime(day_number, date_template)
except ValueError:
raise ValueError(
"Date must be in YYYY-MM-DD format (ex: 2020-09-28)")
dt0 = dt.datetime(dt1.year, 1, 1)
dates_delta = dt1 - dt0
day_number = dates_delta.days + 1
if not type(day_number) is int:
try:
dt0 = dt.datetime(day_number.year, 1, 1)
dates_delta = day_number - dt0
day_number = dates_delta.days + 1
except:
raise TypeError("'day_number' must be an integer")
if not (day_number >= 1 and day_number <= 366):
raise Exception("'day_number' must be between in the range 1-366")
day = DayEntry(day_number, self)
self.days[day_number] = day
day.temp_min = temp_min
day.temp_max = temp_max
day.temp_mean = temp_mean
day.humidity_mean = humidity_mean
day.wind_speed = wind_speed
if radiation_s:
if CHECK_RADIATION_RANGE:
if radiation_s <= day.R_so():
day.radiation_s = radiation_s
else:
raise ValueError("Raditaion out of range")
else:
day.radiation_s = radiation_s
if sunshine_hours:
if CHECK_SUNSHINE_HOURS_RANGE:
if sunshine_hours <= day.daylight_hours():
day.sunshine_hours = sunshine_hours
else:
raise ValueError("Sunshine hours out of range")
else:
day.sunshine_hours = sunshine_hours
return day
#get_day = day_entry
def hour_entry(self, dt_hour, time_template="%Y-%m-%d %H:%M:%S",
temp_min=None,
temp_max=None,
temp_mean=None,
wind_speed=None,
humidity_mean=None,
radiation_s=None,
):
"""
Given a hour (datetime) returns a **StationHour*** instance for
that hour. Logs the hours in *hours* attribute of the **Station()** class.
If it receives "directly" a datetime
You can pass the following named-parameters to the method:
- temp_min
- temp_max
- wind_speed
- radiation_s
If *radiation_s* is out of range for this location
for this date (based on solar declination, sun-distance and daylight hours)
raises ValueError exception.
"""
if type(dt_hour) is str:
try:
dt_hour = dt.datetime.strptime(dt_hour, time_template)
except ValueError:
raise ValueError(
"Datetime must be in YYYY-MM-DD HH:mm:SS format (ex: 2020-09-28 00:00:00)")
dt0 = dt.datetime(dt_hour.year, 1, 1)
dates_delta = dt_hour - dt0
day_number = dates_delta.days + 1
if type(dt_hour) is int:
raise TypeError("'dt_hour' must not be an integer")
hour = HourEntry(dt_hour, self)
self.hours[int(dt.datetime.timestamp(dt_hour)/3600)] = hour
hour.temp_min = temp_min
hour.temp_max = temp_max
hour.temp_mean = temp_mean
hour.humidity_mean = humidity_mean
hour.wind_speed = wind_speed
if radiation_s:
if CHECK_RADIATION_RANGE:
if radiation_s - hour.R_so() > 0.05*hour.R_so():
hour.radiation_s = radiation_s
else:
raise ValueError("Radiation out of range")
else:
hour.radiation_s = radiation_s
return hour
#get_hour = hour_entry
def atmospheric_pressure(self):
"""
Calculates atmospheric pressure *in kPa* based on station's altitude. (Eq. 7)
"""
return round(101.3 * ((293 - 0.0065 * self.altitude) / 293) ** 5.26, 2)
def describe(self):
"""
Describes the station and all its assumptions in human-friendly text
"""
return self
class TimeEntry:
"""
Represents a single day retrieved from the Station.
This class is usually not instantiated directly. It's instantniated by the
**Station()**'s day_entry() method, passing all reuqired state data.
Since bulk of Penman-Moneith is concerned with a daily ETo **StationDay** is
heart of the module. Penman-Monteith equatoin is implemented within the
methods of **StationDay**.
All meteorological data are stored within this class instance.
"""
def __init__(self, time, station):
"""
*time* and *station* are two required arguments passed to
instantiate the class.
*time* is a datetime.datetime instance representing time. It is used to caluclate day_number
Alternatively *time* can be day_number (int), if daily scale is applied.
Following attributes of the class are available. They can be both set
and get.
- time
- day_number
- station - references **Station** class.
- temp_min
- temp_max
- temp_mean
- temp_dew
- temp_dry
- temp_wet
- humidity_mean
- humidity_min
- humidity_max
- vapour_pressure
- logged_atmospheric_pressure
- wind_speed
- radiation_s
- stephan_boltzman_constant
- climate - convenient reference to station.climate
"""
if type(time) == int:
self.day_number = time
else:
# calculate the day number
dt0 = dt.datetime(time.year, 1, 1)
dates_delta = time - dt0
self.day_number = dates_delta.days + 1
self.time = time
self.station = station
self.temp_min = None
self.temp_max = None
self.temp_mean = None
self.humidity_mean = None
self.humidity_min = None
self.humidity_max = None
self.wind_speed = None
self.radiation_s = None
self.temp_dew = None
self.temp_dry = None
self.temp_wet = None
self.temp_soil = None
self.climate = station.climate
self.stephan_boltzmann_constant = 4.903 * (10 ** -9)
self.logged_atmospheric_pressure = None
self.vapour_pressure = None
self.sunshine_hours = None
def wind_speed_2m(self):
"""
Returns wind speed at 2m height.
If this information is already logged, returns as is. If anemometer of
the Station is located higher and wind speed information is available it
converts this information to wind speed as 2ms based on logarithimc
conversion (Eq. 47)
If wind speed was not logged for this date, and if climate is known
tries to rely on Climate data to estimate average wind speed
"""
# if wind speed at 2m height is given, return it
if self.wind_speed and (self.station.anemometer_height == 2):
return self.wind_speed
# if wind speed at height different than 2m is given, calculate wind
# speed at 2m
if self.wind_speed and self.station.anemometer_height != 2:
return round(self.wind_speed * (4.87 /
math.log(67.8 * self.station.anemometer_height - 5.42)), 1)
# if we reach this far no wind information is available to work with. we
# consult if station has any climatic data, in which case we try to
# deduce information off of that:
if self.station.climate:
return self.station.climate.average_wind_speed
return None
def dew_point(self):
"""
If *temp_dew* attribute is logged returns as is. If this data was not
logged, but *temp_min* data is available tries to estimate *temp_dew*
based on Station's Climate. If either is not possible returns *None*.
"""
if self.temp_dew:
return self.temp_dew
if self.temp_min and self.climate:
return self.temp_min - self.climate.dew_point_difference
def atmospheric_pressure(self):
"""
If *atmospheric_pressure* is logged return as is. Else
Calculates atmospheric pressure *in kPa* based on station's altitude. (Eq. 7)
"""
if self.logged_atmospheric_pressure:
return self.logged_atmospheric_pressure
else:
return self.station.atmospheric_pressure()
def latent_heat_of_vaporization(self):
"""
constant *2.45*
"""
return 2.45
def specific_heat(self):
"""
constant: 1.013*10**(-3)
"""
return 1.013 * 10 ** (-3)
def psychrometric_constant(self):
"""
Calculates psychrometric constant based on Station's altitude (and
atmospheric pressure). (Eq. 8)
"""
return round(0.665 * 10 ** (-3) * self.atmospheric_pressure(), 6)
def Tmean(self):
"""
If *temp_mean* is logged returns is as is. If *temp_min* and *temp_max*
are available computes *Tmean* based on these data. If none are
available returns *None*. (Eq. 9)
"""
if self.temp_mean:
return self.temp_mean
if self.temp_max and self.temp_min:
return ((self.temp_max + self.temp_min) / 2)
return None
def saturation_vapour_pressure(self, T):
"""
Calculates saturation vapour pressure for a given temperature. (Eq. 11)
"""
return round((0.6108 * 2.7183 ** (17.27 * T / (T + 237.3))), 3)
def mean_saturation_vapour_pressure(self):
"""
Given *temp_max* and *temp_min* calculates mean saturation vapour pressure. (Eq. 12)
"""
if self.temp_max and self.temp_min:
vp_max = self.saturation_vapour_pressure(self.temp_max)
vp_min = self.saturation_vapour_pressure(self.temp_min)
return (vp_max + vp_min) / 2
if self.temp_mean:
return self.saturation_vapour_pressure(self.temp_mean)
def slope_of_saturation_vapour_pressure(self, T):
"""
Calculates slope of the saturation vapour pressure curve for a given
temperature. It's the required information to calculate ETo. (Eq. 13)
"""
return round((4098 * (0.6108 * 2.7183 ** (17.27 * T / (T + 237.3))))
/ ((T + 237.3) ** 2), 6)
def actual_vapour_pressure(self):
"""
Attepmts to calculate vapour pressure based on several available weather
data.
If *temp_dry* and *temp_wet* data are logged (psychrometric data) uses
(Eq. 15) to calculate actual vapour pressure. If only *temp_dew*
information is logged uses (Eq. 14) to calculate actual vapour pressure.
If *humidity_max* and *humidity_min* are logged uses (Eq. 17) to
calculate vapour pressure. If only *humidity_max* is known uses (Eq. 18)
to estimate actual vapour pressure. If only *humidity_mean* is known
uses (Eq. 19) to estimate actual vapour pressure.
"""
if self.vapour_pressure:
return self.vapour_pressure
if self.temp_dry and self.temp_wet:
vp_wet = self.saturation_vapour_pressure(self.temp_wet)
psychrometric_constant = self.psychrometric_constant()
return round(vp_wet - psychrometric_constant *
(self.temp_dry - self.temp_wet), 3)
if self.humidity_max and self.humidity_min and self.temp_max and self.temp_min:
vp_min = self.saturation_vapour_pressure(self.temp_min)
vp_max = self.saturation_vapour_pressure(self.temp_max)
return round((vp_min * (self.humidity_max / 100) +
vp_max * (self.humidity_min / 100)) / 2, 3)
if self.humidity_max and self.temp_min:
vp_min = self.saturation_vapour_pressure(self.temp_min)
return round(vp_min * (self.humidity_max / 100), 3)
if self.humidity_mean and self.temp_max and self.temp_min:
vp_min = self.saturation_vapour_pressure(self.temp_min)
vp_max = self.saturation_vapour_pressure(self.temp_max)
return round((self.humidity_mean / 100) * ((vp_max + vp_min) / 2), 3)
if self.humidity_mean and self.temp_mean:
vp = self.saturation_vapour_pressure(self.temp_mean)
return round((self.humidity_mean / 100) * vp, 3)
if self.dew_point():
return round(self.saturation_vapour_pressure(self.dew_point()), 3)
def vapour_pressure_deficit(self):
vp = self.mean_saturation_vapour_pressure()
actual_vp = self.actual_vapour_pressure()
return round(vp - actual_vp, 3)
def relative_sun_distance(self):
"""
Eq. 23
"""
return round(1 + 0.033 * math.cos((2 * math.pi / 365) * self.day_number), 3)
def solar_declination(self):
"""
Eq. 24
"""
return round(0.409 * math.sin((2 * math.pi / 365) * self.day_number - 1.39), 3)
def X(self):
"""
Eq. 27
"""
x = (1 - math.tan(self.station.latitutde_radians) *
math.tan(self.solar_declination()))
if x <= 0:
x = 0.00001
return x
def sunset_hour_angle(self):
"""
Eq. 25
"""
return round(math.acos(-1 * math.tan(self.station.latitude_rad) *
math.tan(self.solar_declination())), 3)
# return math.pi / 2 - math.atan(-1 *
# math.tan(self.station.latitutde_radians) *
# math.tan(self.solar_declination()) / ( self.X() ** 0.5 ))
def R_a(self):
"""
Extraterrestrial radiation for daily periods.( Eq. 21 ).
"""
return round(
24 * 60 / math.pi * 0.0820 * self.relative_sun_distance() *
(
(
self.sunset_hour_angle() * math.sin(self.station.latitude_rad) *
math.sin(self.solar_declination())
) +
(
math.cos(self.station.latitude_rad) *
math.cos(self.solar_declination()) *
math.sin(self.sunset_hour_angle())
)
),
1)
def R_a_in_mm(self):
"""
Same as R_a(), but returns the result in mm-equivalents
"""
return round(self.R_a() * 0.408, 1)
def daylight_hours(self):
"""
Eq. 34
"""
return round((24 / math.pi) * self.sunset_hour_angle(), 1)
def solar_radiation_in_mm(self):
"""
Alias to *solar_radiation(n)* but converts the output to mm equivalent,
rounded to 1 decimal.
"""
rs = self.solar_radiation()
return round(rs * 0.408, 1)
# clear-skype solar radiation
def R_so(self):
"""
Calculates clear sky radiation when n=N. Uses (Eq. 36) for elevations
below 100m. Above 100m uses (Eq. 37)
"""
if self.station.altitude < 100:
return round((0.25 + 0.50) * self.R_a(), 1)
return round((0.75 + (2*10**(-5)) * self.station.altitude) * self.R_a(), 1)
def R_ns(self):
"""
Net solar or net shortwave radiation. Uses Crop's albedo in calculations. (Eq. 38).
Return radiation in MJ/m2/day
"""
ref_crop = self.station.ref_crop
return round((1 - ref_crop.albedo) * self.solar_radiation(), 1)
def R_nl(self):
"""
Net longwave radiation. (Eq. 39)
"""
if not (self.temp_max and self.temp_min):
raise Exception(
"Net longwave radiation cannot be calculated without min/max temperature")
TmaxK = self.temp_max + 273.16
TminK = self.temp_min + 273.16
ea = self.actual_vapour_pressure()
rs = self.solar_radiation()
rso = self.R_so()
sb_constant = self.stephan_boltzmann_constant
return round(sb_constant * ((TmaxK ** 4 + TminK ** 4) / 2) *
(0.34 - 0.14 * math.sqrt(ea)) *
(1.35 * (rs / rso) - 0.35), 1)
def net_radiation(self):
"""
Net Radiation. (Eq. 40)
"""
ns = self.R_ns()
try:
nl = self.R_nl()
except Exception as e:
raise(str(e))
if (not ns is None) and (not nl is None):
return round(ns - nl, 1)
def net_radition_in_mm(self):
"""
Same as *net_radiation()*, except returns results in mm-equivalents
"""
net_radition = self.net_radiation()
if net_radition:
return round(net_radition * 0.408, 1)
def RH(self, T):
if not is_number(T):
raise TypeError("Number is expected")
"""
Calculates relative humidity of the air for certain temperature using vapour pressure
"""
return round(100 * (self.actual_vapour_pressure() /
self.saturation_vapour_pressure(T)), 3)
def RH_mean(self):
if self.humidity_mean != None:
return self.humidity_mean
if self.temp_min and self.temp_max:
return int(round(( self.RH(self.temp_min) + self.RH(self.temp_max) ) / 2, 0))
def soil_heat_flux(self):
"""
Soil heat flux. Returns 0.00 (daily coefficient)
This is valid for daily resolution!
"""
return 0.00
def air_conductance_coefficient(self):
#rho_times_cap_through_resistance_per_day = 24*3600*0.622/(1.01*0.287*208)
return 900 # return the official approximation
def eto_hargreaves(self):
"""
ETo estimating using Hargreaves euqation. If wind and humidty information is
available, or can be estimated thsi equation is not recommended. ( Eq. 52 )
"""
Tmean = (self.temp_max + self.temp_min) / 2
return round(0.0023 * (Tmean + 17.8) *
(self.temp_max - self.temp_min) ** 0.5 * self.R_a(), 2)
def eto(self):
"""
Eq. 6
"""
# if we cannot get wind speed data we revert to Hargreaves formula.
# Which is not ideal! This can happen only if user removed default 'climate'
# reference
if not self.wind_speed_2m():
return self.eto_hargreaves()
if self.Tmean() == None:
raise Exception(
"Cannot calculate eto(): temp_mean (mean temperature) is missing")
try:
net_radiation = self.net_radiation()
except Exception as e:
raise(str(e))
Tmean = self.Tmean()
slope_of_vp = self.slope_of_saturation_vapour_pressure(Tmean)
G = self.soil_heat_flux()
u2m = self.wind_speed_2m()
air_cond_coeff = self.air_conductance_coefficient()
eto_nominator = (0.408 * slope_of_vp * (net_radiation - G) +
self.psychrometric_constant() * (air_cond_coeff / (Tmean + 273)) * u2m *
self.vapour_pressure_deficit())
if eto_nominator < 0:
return 0
eto_denominator = slope_of_vp + self.psychrometric_constant() * (1 + 0.34 * u2m)
return round(eto_nominator / eto_denominator, 2)
class DayEntry(TimeEntry):
# Rs
def solar_radiation(self):
"""
If *radiation_s* is logged, returns the value as is. If *sunshine_hours*
attribute of the day class is set returns solar radiation amount in mJ/m2/day.
To convert this number to W/m2 multiply multiply it by 11.57 or divide by
0.0864. Uses Angstrom equation (Eq. 35).
If climate data is available, and climate is *island* location and
station elevation is between 0-100m it uses simplified (Eq. 51). This
equation does not use temperature data, but just solar radiation and a
coefficient.
If station elevation is higher than 100m and/or location is not island
it uses (Eq. 50) that calculates solar radiation by using temperature
data along with a *krs* constant.
If climate is not known it assumes **n=N**, meaning daily sunshine hours
is the same as daylight hours for the given day and location.
"""
if self.radiation_s:
# We need to make sure that solar radiation if set, is not
# larger than clear-sky solar radiation
if CHECK_RADIATION_RANGE and (self.radiation_s > self.R_so()):
raise ValueError(
"Solar radiation out ot range. Rso=" + str(self.R_so()))
return self.radiation_s
n = self.sunshine_hours
if n == None:
# if we are in island location we refer to equation 51 in UAN-FAO
# paper 56
if (self.station.climate and self.station.climate.island_location
and self.station.altitude < 100):
Ra = self.R_a()
return round((0.7 * Ra) - 4, 1)
if self.station.climate and self.temp_min and self.temp_max:
# We assume caller has only temperature informaiton, and no
# information on overcast conditions. So we resort to Hargreaves
# and Samani's radiation formula:
climate = self.station.climate
Ra = self.R_a()
krs = 0.16
if climate.coastal_location:
krs = 0.19
elif climate.interior_location:
krs = 0.16
return round(krs * math.sqrt(self.temp_max - self.temp_min) * Ra, 1)
else:
n = self.daylight_hours()
if n and not is_number(n):
raise TypeError("'n' must be a number")
if n < 0:
raise ValueError("Observed daylight hours cannot be less than 0")
# n cannot be more than N, which is available daylight hours
if (n > self.daylight_hours()) and CHECK_SUNSHINE_HOURS_RANGE:
raise ValueError("Daylight hours out of range")
a_s = 0.25
b_s = 0.50
N = self.daylight_hours() # this is the maximum possible sunshine duration
Ra = self.R_a()
return round((a_s + b_s * n / N) * Ra, 1)
class HourEntry(TimeEntry):
def soil_heat_flux(self):
"""
Soil heat flux. Returns 0.1 * *Rn* at day and 0.5 * *Rn* at night.
Approximation valid for hourly resolution
"""
if self.radiation_s < 0.05: # MJ/m2/s
G = 0.5*self.net_radiation()
else:
G = 0.1*self.net_radiation()
return G
def solar_time_angle(self):
b = 2*math.pi*(self.day_number-81)/364
season_correction = 0.1645*math.sin(2*b) - 0.1255*math.cos(b)-0.025*math.sin(b)
w = math.pi / 12 * (
( self.time.hour+0.5 + 0.06667*( self.station.timezone_longitude - self.station.longitude )
+ season_correction) - 12)
return w
def R_a(self):
ws = self.sunset_hour_angle()
w = self.solar_time_angle()
if ( (w < -ws) or (w > ws) ):
return 0
w1 = w - math.pi*1/24
w2 = w + math.pi*1/24
d = self.relative_sun_distance()
delta = self.station.latitude_rad
phi = self.solar_declination()
Ra = 12*60/math.pi * 0.0820 * d *( (w2-w1)*math.sin(phi)*math.sin(delta)+math.cos(phi)*math.cos(delta)*(math.sin(w2)-math.sin(w1)))
return round(Ra,3)
def R_l_outgoing(self):
eps = 1
bz = self.stephan_boltzmann_constant/24
return round(eps*bz*(self.temp_soil+273.16)**4, 1)
def R_l_incoming(self):
def clear_sky_emissivity(T):
return round(8.733*10**(-3)*(T+273.16)**0.788,3)
if self.R_so() == 0:
warnings.warn("The nighttime cloudcover is not estimated but arbitrarily set to 0.5. Consider interpolating over night")
f = 0.5 # this is for nighttime, so not so important. Just take average cloud cover
else:
radfrac = self.radiation_s/self.R_so()
f = 1-radfrac
if f < 0:
f = 0
elif f > 1:
f = 1
T = self.Tmean()
eps_0 = clear_sky_emissivity(T)
eps_star = eps_0*(1+0.26*f)
bz = self.stephan_boltzmann_constant/24
return round(eps_star*bz*(T+273.16)**4,1)
def R_nl(self):
"""
Net longwave radiation with Stephan-Bolzmann
"""
if self.temp_soil == None:
raise Exception(
"Net longwave radiation cannot be calculated without soil temperature")
R_ol = self.R_l_outgoing()
R_il = self.R_l_incoming()
return (R_ol - R_il)
# Rs
def solar_radiation(self):
"""
If *radiation_s* is logged, returns the value as is.
Otherwise raise exception. For hourly values of eto radiation is required.
For daily values of eto, radiation can be computed (see class DayEntry)
"""
if not self.radiation_s is None:
# We need to make sure that solar radiation if set, is not
# larger than clear-sky solar radiation
if CHECK_RADIATION_RANGE:
Rso = self.R_so()
if (Rso == 0) and (self.radiation_s > 0.05):
raise ValueError(
"'Lunar' radiation out ot range. radiation =" + str(self.radiation_s) + " should be near 0.")
elif (Rso>0) and ( (self.radiation_s-Rso)/Rso > 0.05):
raise ValueError(
"Solar radiation out ot range. Rso=" + str(Rso))
return self.radiation_s
else:
raise(Exception(
"Cannot calculate eto(): radiation_s (Solar radiation) is missing"))
def air_conductance_coefficient(self):
#rho_times_cap_through_resistance_per_hour = 3600*0.622/(1.01*0.287*208)
return 37 # return the official approximation
class Climate:
"""
Represents a default climate according to *UN-FAO Paper 56*. If
module has to make any assumptions regarding the climate it consults
this class for any clues. If you wish to not use any assumptions and
rely soleley on logged station data (if such is available) you may set
Station's *climate* attribute to *None*.
station = Station(latitude=-20.5, altitude=200)
station.climate = None
If you want to set a new climate:
humid_climate = Climate().humid().coastal().moderate_winds()
station = Station(latitude=-20.5, altitude=200)
station.climate = humid_climate
"""
def __init__(self):
"""
Accepts no arguments. Default initialization is as follows:
- interior_location
- arid_climate
- dew_point_difference = 2
- average_wind_speed = 2.0 m/s
- k_rs = 0.16
To affect these values use respected methods documented below.
"""
self.interior_location = True
self.coastal_location = False
self.island_location = False
self.arid_climate = True
self.humid_climate = False
# Assining default values for the climatic condition to be able to
# calculate missing data accurately
self.dew_point_difference = 2
self.average_wind_speed = 2.0
self.k_rs = 0.16
def light_winds(self):
"""
Sets *average_wind_speed* to 0.5m/s
"""
self.average_wind_speed = 0.5
return self
def moderate_winds(self):
"""
Sets *average_wind_speed* to 2.0m/s
"""
self.average_wind_speed = 2
return self
def strong_winds(self):
"""
Sets average_wind_speed to 4m/s
"""
self.average_wind_speed = 4
return self
def arid(self):
"""
Sets *arid_climate*, sets *dew_point_difference* to 2
"""
self.arid_climate = True
self.humid_climate = False
self.dew_point_difference = 2
return self
def humid(self):
"""
Sets *humid_climate*, *dew_point_difference* to 0
"""
self.arid_climate = False
self.humid_climate = True
self.dew_point_difference = 0
return self
def interior(self):
"""
Sets *interior_location*, *k_rs* coefficient to *0.16*
"""
self.interior_location = True
self.coastal_location = False
self.island_location = False
self.k_rs = 0.16
return self
def coastal(self):
"""
Sets *coastal_location*, *k_rs* to *0.19*
"""
self.interior_location = False
self.coastal_location = True
self.island_location = False
self.k_rs = 0.19
return self
def island(self):
""" Sets *island_location*. Sets *k_rs* to 0.19 """
self.interior_location = False
self.coastal_location = False
self.island_location = True
self.k_rs = 0.19
return self
"""
def set_location(self, location):
if location == "coastal":