-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.cpp
398 lines (360 loc) · 11.9 KB
/
train.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <map>
#include <vector>
#include <cmath>
#include <algorithm>
#include <set>
#include <cstdlib>
#include <unistd.h>
#include <signal.h>
#ifdef MULTITHREAD
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#endif
static volatile sig_atomic_t eflag = 0;
static void handler(int signum) {
if(eflag) {
eflag = 0;
} else {
exit(0);
}
}
class AdaBoost {
private:
struct Range {
std::vector<unsigned int>::iterator begin;
std::vector<unsigned int>::iterator end;
};
std::vector<double> D;
std::vector<double> model;
std::vector<std::string> features;
std::vector<unsigned int> instances_buf;
std::vector<Range> instances;
std::vector<signed char> labels;
unsigned int num_instances;
class Task {
private:
const std::vector<Range> & instances_;
const std::vector<signed char> & labels_;
std::vector<double> & D_;
unsigned int numThreads;
unsigned int no;
#ifdef MULTITHREAD
boost::thread thread;
#endif
double a_exp;
unsigned int h_best;
void run() {
const std::vector<Range> & instances = instances_;
const std::vector<signed char> & labels = labels_;
std::vector<double> & D = D_;
const unsigned int num_instances = instances.size();
D_sum = 0.0;
D_sum_plus = 0.0;
std::fill(errors.begin(), errors.end(), 0.0);
for(unsigned int i = no; i < num_instances; i+=numThreads) {
const int label = labels[i];
const Range &hs = instances[i];
const std::vector<unsigned int>::const_iterator it = std::lower_bound(hs.begin, hs.end, h_best);
const int prediction = (it==hs.end || *it != h_best) ? -1 : +1;
if(label * prediction < 0) {
D[i] *= a_exp;
} else {
D[i] /= a_exp;
}
D_sum += D[i];
if(label > 0) D_sum_plus += D[i];
const double d = D[i] * label;
for(std::vector<unsigned int>::iterator h = hs.begin; h < hs.end; ++h) {
errors[*h] -= d;
}
}
}
public:
std::vector<double> errors;
double D_sum;
double D_sum_plus;
Task(const std::vector<Range> & instances,
const std::vector<signed char> & labels,
std::vector<double> & D,
unsigned int num_features,
unsigned int no,
unsigned int numThreads):
instances_(instances), labels_(labels), D_(D), errors(num_features) {
this->numThreads = numThreads;
this->no = no;
}
void start(unsigned int h_best, double a_exp) {
this->h_best = h_best;
this->a_exp = a_exp;
#ifdef MULTITHREAD
thread = boost::thread(boost::bind(&Task::run, this));
#else
run();
#endif
}
void join() {
#ifdef MULTITHREAD
thread.join();
#endif
}
};
public:
double threshold;
unsigned int numIteration;
unsigned int numThreads;
AdaBoost() {
threshold = 0.01;
numIteration = 100;
numThreads = 1;
}
void initializeFeatures(const char* instances_file) {
std::map<std::string, double> m;
std::ifstream ifinstances(instances_file);
std::string line;
std::string h;
num_instances = 0;
unsigned int buf_size = 0;
while(ifinstances && getline(ifinstances, line)) {
std::istringstream is(line);
int label;
is >> label;
while(is >> h) {
m[h] = 0.0;
++buf_size;
}
++num_instances;
if(num_instances % 1000 == 0) {
std::cerr << "finding instances...: " << num_instances << " instances found\r";
}
}
std::cerr << "finding instances...: " << num_instances << " instances found\n";
m[""] = 0.0;
for(unsigned int h = 0; h < features.size(); ++h) {
m[features[h]] = model[h];
}
D.resize(0);
D.reserve(num_instances);
labels.resize(0);
labels.reserve(num_instances);
instances.resize(0);
instances.reserve(num_instances);
instances_buf.resize(0);
instances_buf.reserve(buf_size);
features.resize(0);
features.reserve(m.size());
model.resize(0);
model.reserve(m.size());
for(std::map<std::string, double>::iterator it = m.begin(); it != m.end(); ++it) {
features.push_back(it->first);
model.push_back(it->second);
}
}
void initializeInstances(const char* instances_file) {
std::ifstream ifinstances(instances_file);
std::string line;
std::string h;
const double bias = getBias();
while(ifinstances && getline(ifinstances, line)) {
std::istringstream is(line);
int label;
double score = bias;
Range range;
range.begin = instances_buf.end();
is >> label;
labels.push_back(label);
while(is >> h) {
std::vector<std::string>::iterator it = std::lower_bound(features.begin(), features.end(), h);
const unsigned int index = it - features.begin();
instances_buf.push_back(index);
score += model[index];
}
range.end = instances_buf.end();
std::sort(range.begin, range.end);
instances.push_back(range);
D.push_back(std::exp(-label*score*2));
if(D.size() % 1000 == 0)
std::cerr << "loading instances...: " << D.size() << "/" << num_instances << " instances loaded\r";
}
std::cerr << std::endl;
}
void train() {
const unsigned int num_features = features.size();
unsigned int h_best = 0;
double e_best = 0.5;
double a = 0;
double a_exp = 1;
std::vector<Task*> tasks;
for(int i = 0; i < numThreads; ++i) {
tasks.push_back(new Task(instances, labels, D, num_features, i, numThreads));
}
for(int t = 0; eflag && t < numIteration; ++t) {
// update & calculate errors
double D_sum = 0.0;
double D_sum_plus = 0.0;
for(int i = 0; i < numThreads; ++i) {
tasks[i]->start(h_best, a_exp);
}
for(int i = 0; i < numThreads; ++i) {
tasks[i]->join();
D_sum += tasks[i]->D_sum;
D_sum_plus += tasks[i]->D_sum_plus;
}
// select best classifier
e_best = D_sum_plus / D_sum;
h_best = 0;
for(unsigned int h = 1; h < num_features; ++h) {
double e = 0;
for(unsigned int i = 0; i < numThreads; ++i) {
e += tasks[i]->errors[h];
}
e = (e + D_sum_plus) / D_sum;
if(std::abs(0.5-e) > std::abs(0.5-e_best)) {
h_best = h;
e_best = e;
}
}
std::cerr << t << "\t" << std::abs(0.5-e_best) << "\r";
if(std::abs(0.5-e_best)<threshold) break;
if(e_best<1e-10) e_best = 1e-10;
if(e_best>1-1e-10) e_best = 1-1e-10;
// update model
a = 0.5 * std::log((1-e_best)/e_best);
a_exp = std::exp(a);
model[h_best] += a;
// normalize
for(unsigned int i = 0; i < num_instances; ++i) {
D[i] /= D_sum;
}
}
for(int i = 0; i < numThreads; ++i) {
delete tasks[i];
}
std::cerr << std::endl;
}
void saveModel(const char* model_file) const {
const unsigned int num_features = features.size();
std::ofstream ofmodel(model_file);
double bias = -model[0];
ofmodel.precision(20);
for(unsigned int h = 1; h < num_features; ++h) {
const double a = model[h];
if(a == 0.0) continue;
ofmodel << features[h] << "\t" << a << std::endl;
bias -= a;
}
ofmodel << bias/2 << std::endl;
}
void loadModel(const char* model_file) {
std::ifstream ifmodel(model_file);
std::string line;
std::map<std::string, double> m;
double bias = 0.0;
m[""] = 0.0;
while(ifmodel && getline(ifmodel, line)) {
std::istringstream is(line);
std::string h;
double value;
is >> h;
if(is >> value) {
m[h] = value;
bias += value;
} else {
m[""] = std::atof(h.c_str());
}
}
m[""] = -m[""]*2 - bias;
features.resize(0);
features.reserve(m.size());
model.resize(0);
model.reserve(m.size());
for(std::map<std::string, double>::iterator it = m.begin(); it != m.end(); ++it) {
features.push_back(it->first);
model.push_back(it->second);
}
}
double getBias() const {
double bias = 0.0;
const unsigned int num_features = features.size();
for(unsigned int h = 0; h < num_features; ++h) {
bias -= model[h];
}
return bias / 2;
}
void showResult() const {
const double bias = getBias();
const unsigned int num_features = features.size();
std::cerr << "Result:" << std::endl;
unsigned int pp = 0, pn = 0, np = 0, nn = 0;
for(unsigned int i = 0; i < num_instances; ++i) {
const int label = labels[i];
const Range &hs = instances[i];
double score = bias;
for(std::vector<unsigned int>::iterator h = hs.begin; h < hs.end; ++h) {
score += model[*h];
}
if(score >= 0) {
if(label > 0) {
++pp;
} else {
++pn;
}
} else {
if(label > 0) {
++np;
} else {
++nn;
}
}
}
std::cerr << "Accuracy: " << static_cast<double>(pp+nn)/num_instances*100 << "% (" << (pp+nn) << "/" << num_instances << ")" << std::endl;
std::cerr << "Precision: " << static_cast<double>(pp)/(pp+pn)*100 << "% (" << pp << "/" << (pp+pn) << ")" << std::endl;
std::cerr << "Recall: " << static_cast<double>(pp)/(pp+np)*100 << "% (" << pp << "/" << (pp+np) << ")" << std::endl;
std::cerr << "System/Answer p/p p/n n/p n/n: " << pp << " " << pn << " " << np << " " << nn << std::endl;
}
};
int main(int argc, char** argv) {
if (signal(SIGINT, handler) == SIG_ERR) {
std::cerr << "signal error" << std::endl;
return -1;
}
// Parse arg
int c;
AdaBoost t;
while((c=getopt(argc, argv, "t:n:M:m:"))!=-1) {
switch (c) {
case 't':
t.threshold = std::atof(optarg);
break;
case 'n':
t.numIteration = std::atoi(optarg);
break;
case 'M':
t.loadModel(optarg);
break;
case 'm':
#ifdef MULTITHREAD
t.numThreads = std::atoi(optarg);
#else
t.numThreads = 1;
#endif
break;
}
}
if(optind+1>=argc) {
std::cerr << "Usage: " << argv[0] << " [-t threshold] [-n number-of-iteration] instances_file model_file" << std::endl;
return -1;
}
const char* instances_file = argv[optind];
const char* model_file = argv[optind+1];
t.initializeFeatures(instances_file);
t.initializeInstances(instances_file);
eflag = 1;
t.train();
t.saveModel(model_file);
t.showResult();
return 0;
}