-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
300 lines (237 loc) · 11.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2LMHeadModel
from types import SimpleNamespace
from timm import create_model
class GPT2Attention(nn.Module):
def __init__(self,config):
super().__init__()
self.embed_dim = config.embed_dim
self.n_heads = config.num_heads
assert self.embed_dim % self.n_heads == 0, 'embedding dimension by be divisible by number of heads'
self.head_size = self.embed_dim // self.n_heads
self.seq_len = config.seq_len
self.c_attn = nn.Linear(self.embed_dim, self.head_size * self.n_heads * 3,bias=True)
self.scale = self.head_size ** -0.5
self.register_buffer('mask',torch.tril(torch.ones(1,1,self.seq_len,self.seq_len)))
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
self.attn_dropout = nn.Dropout(config.attention_dropout)
self.resid_dropout = nn.Dropout(config.residual_dropout)
def forward(self, x):
b,t,c = x.shape
# q,k,v shape individually: batch_size x seq_len x embed_dim
# we know that qk_t = q x k_t, where q=bxtxhead_dim, k_t=bxhead_timxt
q,k,v = self.c_attn(x).chunk(3,dim=-1)
q = q.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) # batch x n_heads x seq_len x head_dim
k = k.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3)
v = v.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3)
qk_t = (q@k.transpose(-2,-1)) * self.scale
qk_t = qk_t.masked_fill(self.mask[:,:,:t,:t]==0,float('-inf'))
qk_t = F.softmax(qk_t,dim=-1)
weights = self.attn_dropout(qk_t)
attention = weights @ v # batch x n_heads x t x head_size
attention = attention.permute(0,2,1,3).contiguous().view(b,t,c) # batch x t x embed_dim
out = self.c_proj(attention)
out = self.resid_dropout(out)
return out
class GPT2CrossAttention(nn.Module):
def __init__(self,config):
super().__init__()
self.embed_dim = config.embed_dim
self.n_heads = config.num_heads
assert self.embed_dim % self.n_heads == 0, 'embedding dimension by be divisible by number of heads'
self.head_size = self.embed_dim // self.n_heads
self.seq_len = config.seq_len
self.q = nn.Linear(self.embed_dim,self.embed_dim)
self.k = nn.Linear(self.embed_dim,self.embed_dim)
self.v = nn.Linear(self.embed_dim,self.embed_dim)
self.scale = self.head_size ** -0.5
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
self.attn_dropout = nn.Dropout(config.attention_dropout)
self.resid_dropout = nn.Dropout(config.residual_dropout)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def forward(self, q,k,v):
b,t,c = q.shape
q = self.q(q)
k = self.k(k)
v = self.v(v)
q = q.view(b,q.size(1),self.n_heads,self.head_size).permute(0,2,1,3) # batch x n_heads x seq_len x head_dim
k = k.view(b,k.size(1),self.n_heads,self.head_size).permute(0,2,1,3)
v = v.view(b,v.size(1),self.n_heads,self.head_size).permute(0,2,1,3)
qk_t = (q@k.transpose(-2,-1)) * self.scale
qk_t = F.softmax(qk_t,dim=-1)
weights = self.attn_dropout(qk_t)
attention = weights @ v # batch x n_heads x t x head_size
attention = attention.permute(0,2,1,3).contiguous().view(b,t,c) # batch x t x embed_dim
out = self.c_proj(attention)
out = self.resid_dropout(out)
return out
class GPT2MLP(nn.Module):
def __init__(self,config):
super().__init__()
self.embed_dim = config.embed_dim
self.mlp_ratio = config.mlp_ratio
self.mlp_dropout = config.mlp_dropout
self.c_fc = nn.Linear(self.embed_dim,self.embed_dim*self.mlp_ratio)
self.c_proj = nn.Linear(self.embed_dim*self.mlp_ratio,self.embed_dim)
self.act = nn.GELU()
self.dropout = nn.Dropout(self.mlp_dropout)
def forward(self,x):
x = self.c_fc(x)
x = self.act(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class GPT2Block(nn.Module):
def __init__(self,config):
super().__init__()
self.embed_dim = config.embed_dim
self.ln_1 = nn.LayerNorm(self.embed_dim)
self.attn = GPT2Attention(config)
self.ln_2 = nn.LayerNorm(self.embed_dim)
self.mlp = GPT2MLP(config)
self.ln_3 = nn.LayerNorm(self.embed_dim)
self.cross_attn = GPT2CrossAttention(config)
def forward(self,x,enc_out):
x = x+self.attn(self.ln_1(x))
x = x+self.cross_attn(self.ln_2(x),enc_out,enc_out)
x = x+self.mlp(self.ln_3(x))
return x
class VisionGPT2Model(nn.Module):
def __init__(self,config):
super().__init__()
self.config = config
vit = create_model('vit_base_patch16_224',pretrained=False,num_classes=0)
self.patch_embed = vit.patch_embed
num_patches = self.patch_embed.num_patches
self.cls_token = vit.cls_token
embed_len = num_patches + vit.num_prefix_tokens
self.pos_embed = vit.pos_embed
self.pos_drop = nn.Dropout(p=0.)
self.blocks = nn.ModuleList([vit.blocks[i] for i in range(config.depth)])
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size,config.embed_dim),
wpe = nn.Embedding(config.seq_len,config.embed_dim),
drop = nn.Dropout(config.emb_dropout),
h = nn.ModuleList([GPT2Block(config) for _ in range(config.depth)]),
ln_f = nn.LayerNorm(config.embed_dim)
))
self.lm_head = nn.Linear(config.embed_dim,config.vocab_size,bias=False)
self.transformer.wte.weight = self.lm_head.weight
def _pos_embed(self,x):
pos_embed = self.pos_embed
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + pos_embed
return self.pos_drop(x)
def pretrained_layers_trainable(self,trainable=False):
layers = [
self.cls_token, self.patch_embed, self.pos_embed, self.blocks,
self.transformer.wte, self.transformer.wpe,
self.transformer.ln_f, self.lm_head
]
gpt_layers = [[
self.transformer.h[i].ln_1,self.transformer.h[i].ln_2,
self.transformer.h[i].attn,self.transformer.h[i].mlp
] for i in range(self.config.depth)]
for l in gpt_layers:
layers.extend(l)
for layer in layers:
if not isinstance(layer,nn.Parameter):
for p in layer.parameters():
p.requires_grad = trainable
else:
layer.requires_grad = trainable
total_frozen_params = sum([p.numel() for p in self.parameters() if not p.requires_grad])
print(f'{total_frozen_params=}')
def unfreeze_gpt_layers(self,):
gpt_layers = [[
self.transformer.h[i].ln_1,self.transformer.h[i].ln_2,
self.transformer.h[i].attn,self.transformer.h[i].mlp
] for i in range(self.config.depth)]
flatten = []
for l in gpt_layers:
flatten.extend(l)
for layer in flatten:
if not isinstance(layer,nn.Parameter):
for p in layer.parameters():
p.requires_grad = True
else:
layer.requires_grad = True
@classmethod
def from_pretrained(self,config):
model = VisionGPT2Model(config)
sd = model.state_dict()
keys = sd.keys()
ignore_matches = ['blocks.','cross_attn.','ln_3','cls_token','pos_embed','patch_embed.','.attn.mask']
vit_keys = [key for key in keys if any(match in key for match in ignore_matches)]
gpt_keys = [key for key in keys if key not in vit_keys]
gpt2_small = GPT2LMHeadModel.from_pretrained('gpt2')
sd_hf = gpt2_small.state_dict()
hf_keys = sd_hf.keys()
hf_keys = [k for k in hf_keys if not k.endswith('.attn.masked_bias')]
hf_keys = [k for k in hf_keys if not k.endswith('.attn.bias')]
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
for k in hf_keys:
if any(match in k for match in ignore_matches):
continue
if any(k.endswith(w) for w in transposed):
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
model.load_state_dict(sd)
return model
def forward(self,image,input_ids,labels=None):
image = self.patch_embed(image)
image = self._pos_embed(image)
token_embeddings = self.transformer.wte(input_ids) # batch x seq_len
pos_embs = torch.arange(0,input_ids.size(1)).to(input_ids.device)
positional_embeddings = self.transformer.wpe(pos_embs)
input_ids = self.transformer.drop(token_embeddings+positional_embeddings)
for i in range(self.config.depth):
image = self.blocks[i](image)
input_ids = self.transformer.h[i](input_ids, image)
input_ids = self.transformer.ln_f(input_ids)
if labels is not None:
lm_logits = self.lm_head(input_ids)
loss = F.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
return loss
lm_logits = self.lm_head(input_ids[:,[-1],:])
return lm_logits
def generate(self,image,sequence,max_tokens=50,temperature=1.0,deterministic=False,eos_token_id=50256):
for _ in range(max_tokens):
out = self(image,sequence)
out = out[:,-1,:] / temperature
probs = F.softmax(out,dim=-1)
if deterministic:
next_token = torch.argmax(probs,dim=-1,keepdim=True)
else:
next_token = torch.multinomial(probs,num_samples=1)
sequence = torch.cat([sequence,next_token],dim=1)
if next_token.item() == eos_token_id:
break
return sequence.cpu().flatten()
if __name__ == '__main__':
model_config = SimpleNamespace(
vocab_size = 50_257,
embed_dim = 768,
num_heads = 12,
seq_len = 1024,
depth = 12,
attention_dropout = 0.1,
residual_dropout = 0.1,
mlp_ratio = 4,
mlp_dropout = 0.1,
emb_dropout = 0.1,
)
# this model is ready to be trained for image captioning
model = VisionGPT2Model.from_pretrained(model_config)