forked from rohitinu6/Stock-Price-Prediction
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
68 lines (53 loc) · 2.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from flask import Flask, render_template, request
import numpy as np
import pickle
import os
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
app = Flask(__name__)
models_dir = "Stock-Price-Prediction/prediction.pkl"
data_file = "Stock-Price-Prediction/Updated_SBIN.csv"
df = pd.read_csv(data_file)
print(df.columns)
# Load the model
try:
with open(models_dir, "rb") as stock_file:
stock_model = pickle.load(stock_file)
except FileNotFoundError:
stock_model = None
def save_data(inputs, close_prediction):
new_data = pd.DataFrame([inputs + [close_prediction]], columns=['Open', 'High', 'Low', 'Volume', 'Close'])
with open(data_file, mode='a', newline='') as file:
new_data.to_csv(file, header=False, index=False)
def retrain_model():
X = df[['Open', 'High', 'Low', 'Volume']]
y = df['Close']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
stock_model_xgb = xgb.XGBRegressor(objective='reg:squarederror', random_state=42)
stock_model_xgb.fit(X_train, y_train)
with open(models_dir, "wb") as stock_file_xgb:
pickle.dump(stock_model_xgb, stock_file_xgb)
@app.route('/')
def home():
return render_template('home.html')
@app.route('/predict_close', methods=['GET', 'POST'])
def predict_close():
if request.method == 'POST':
try:
inputs = [
float(request.form.get('Open')),
float(request.form.get('High')),
float(request.form.get('Low')),
float(request.form.get('Volume'))
]
close_prediction = stock_model.predict(np.array([inputs]))[0] if stock_model else None
save_data(inputs, close_prediction)
retrain_model()
return str(round(close_prediction, 2)) if close_prediction is not None else "Error: Stock model not loaded."
except Exception as e:
return f"An error occurred: {e}"
# If it's a GET request, render the stock.html page
return render_template('stock.html')
if __name__ == "__main__":
app.run(debug=True)