-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstdfilt.cpp
235 lines (185 loc) · 7.6 KB
/
stdfilt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*@author: Shruti Singh
*
*/
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <time.h>
#include <wait.h>
using namespace cv;
using namespace std;
Mat stdfilt(Mat I);//, Mat NHOOD=Mat(3, 3, CV_8UC3,Scalar(1,1,1)) );
Mat stdfilt(Mat I, Mat NHOOD);
// int main(int argc, char** argv )
// {
// if ( argc != 2 )
// {
// printf("usage: DisplayImage.out <Image_Path>\n");
// return -1;
// }
// Mat image;
// image = imread( argv[1], 1 );
// if ( !image.data )
// {
// printf("No image data \n");
// return -1;
// }
// //Display the image befor stdfilt() and after appplying the function
// imshow("before", image);
// Mat J=stdfilt(image, Mat(11,11,CV_8UC3)); // standard deviation of a 11x11 neighbourhood
// // for default values of neighbourhood=3x3, omit the 2nd argument, i.e. J=stdfilt(image)
// imshow("after", J);
// waitKey(0);
// return 0;
// }
/* Determine the number of channels in the image(eg 3 for RGB images).
* For each channel, calculate the mean, then variance and finally standard deviation and write to that particular channel of that pixel.
*/
Mat stdfilt(Mat img){
int channels=img.channels();
int count=0;
long int w, z, y, x, tempx, tempy;
double mean[channels], variance[channels];
int NHOODSizeY=1;
int NHOODSizeX=1;
for(y=0;y<img.rows;y++)
{
for(x=0;x<img.cols;x++)
{
count=0;
while(count<channels)
{
variance[count]=0;
mean[count]=0;
++count;
}
for(w=(y-NHOODSizeY);w<=(y+NHOODSizeY);++w)
{
for(z=(x-NHOODSizeX);z<=(x+NHOODSizeX);++z)
{
tempy=w;
tempx=z;
if(w>=img.rows)
tempy=2*(img.rows-1)-w;
if(z>=img.cols)
tempx=2*(img.cols-1)-z;
count=0;
while(count<channels)
{
mean[count]+=img.data[channels*(img.cols*abs(tempy) + abs(tempx)) + count];
++count;
}
}
}
count=0;
while(count<channels)
{
mean[count]=mean[count]/((NHOODSizeY*2+1)*(NHOODSizeX*2+1));
++count;
}
for(w=(y-NHOODSizeY);w<=(y+NHOODSizeY);++w)
{
for(z=(x-NHOODSizeX);z<=(x+NHOODSizeX);++z)
{
count=0;
while(count<channels)
{
tempy=w;
tempx=z;
if(w>=img.rows)
tempy=2*(img.rows-1)-w;
if(z>=img.cols)
tempx=2*(img.cols-1)-z;
variance[count]+=pow((img.data[channels*(img.cols*abs(tempy) + abs(tempx) ) + count]-mean[count]),2);
++count;
}
}
}
count=0;
while(count<channels)
{
variance[count]=variance[count]/((NHOODSizeY*2+1)*(NHOODSizeX*2+1));
img.data[channels*(img.cols*y + x) + count]=sqrt(variance[count]);
++count;
}
}
}
//imshow("after", img);
return img;
}
Mat stdfilt(Mat img, Mat NHOOD ){
Mat J;
imshow("before", img);
int channels=img.channels();
int count=0;
long int w, z, y, x, tempx, tempy;
double mean[channels], variance[channels];
int NHOODSizeY=(NHOOD.rows)/2;
int NHOODSizeX=(NHOOD.cols)/2;
for(y=0;y<img.rows;y++)
{
for(x=0;x<img.cols;x++)
{
count=0;
while(count<channels)
{
variance[count]=0;
mean[count]=0;
++count;
}
for(w=(y-NHOODSizeY);w<=(y+NHOODSizeY);++w)
{
for(z=(x-NHOODSizeX);z<=(x+NHOODSizeX);++z)
{
tempy=w;
tempx=z;
if(w>=img.rows)
tempy=2*(img.rows-1)-w;
if(z>=img.cols)
tempx=2*(img.cols-1)-z;
count=0;
while(count<channels)
{
mean[count]+=img.data[channels*(img.cols*abs(tempy) + abs(tempx)) + count];
++count;
}
}
}
count=0;
while(count<channels)
{
mean[count]=mean[count]/((NHOODSizeY*2+1)*(NHOODSizeX*2+1));
++count;
}
for(w=(y-NHOODSizeY);w<=(y+NHOODSizeY);++w)
{
for(z=(x-NHOODSizeX);z<=(x+NHOODSizeX);++z)
{
count=0;
while(count<channels)
{
tempy=w;
tempx=z;
if(w>=img.rows)
tempy=2*(img.rows-1)-w;
if(z>=img.cols)
tempx=2*(img.cols-1)-z;
variance[count]+=pow((img.data[channels*(img.cols*abs(tempy) + abs(tempx) ) + count]-mean[count]),2);
++count;
}
}
}
count=0;
while(count<channels)
{
variance[count]=variance[count]/((NHOODSizeY*2+1)*(NHOODSizeX*2+1));
img.data[channels*(img.cols*y + x) + count]=sqrt(variance[count]);
++count;
}
}
}
//imshow("after", img);
return img;
}