-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdiffMedian.py
211 lines (155 loc) · 8.14 KB
/
diffMedian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import ee
class diffMedian():
def __init__(self):
self.exportPath = 'users/TEST/'
self.epsg = "EPSG:32717"
self.ecoregions = ee.FeatureCollection("projects/Sacha/AncillaryData/StudyRegions/Ecuador_EcoRegions_Buffered")
self.nDayBuffer = 7*10
self.diffCountMin = 3
self.biweeklyIC = 'projects/Sacha/PreprocessedData/L8_Biweekly_V6'
def smartJoin(self,primary,secondary,julianDiff):
"""Function for joining based on max julian difference. Assumes startJulian and endJulian are set."""
#Create a time filter to define a match as overlapping timestamps.
maxDiffFilter = ee.Filter.Or(
ee.Filter.maxDifference(
difference = julianDiff,
leftField = 'startJulian',
rightField = 'endJulian'),
ee.Filter.maxDifference(
difference = julianDiff,
leftField = 'startJulian',
rightField = 'endJulian'
)
)
# Define the join.
saveAllJoin = ee.Join.saveAll(
matchesKey = 'matches',
measureKey = 'dayDiff'
)
#Apply the join.
joined = saveAllJoin.apply(primary, secondary, maxDiffFilter)
return joined
def mergeMany(self,img,secondaryProperty,sortProperty):
"""Function to get the many secondaries and choose the first non null value"""
img = ee.Image(img)
secondaries = img.get(secondaryProperty)
secondaries = ee.ImageCollection.fromImages(secondaries).sort(sortProperty)
secondaries1 = secondaries.filter(ee.Filter.calendarRange(preYearPrimary,preYearPrimary,'year'))
secondaries2 = secondaries.filter(ee.Filter.calendarRange(preYearSecondary,preYearSecondary,'year'))
secondary1Composite = ee.Image(self.weightedCombiner(secondaries1))
secondary2Composite = ee.Image(self.weightedCombiner(secondaries2))
secondariesMosaiced = ee.ImageCollection([secondary1Composite,secondary2Composite]).mosaic()
return img.addBands(secondariesMosaiced)
def weightedCombiner(self,matches):
"""Function to take a set of matches and create a weighted median composite. Assumes the dayDiff property is set."""
#Find the unique dayDiffs.
matchesHist = ee.Dictionary(matches.aggregate_histogram('dayDiff'))
#Convert it back to a number.
def convertkeys(n):
return ee.Number.parse(n).float()
keys = matchesHist.keys().map(convertkeys)
#Find the min and max of the dayDiffs and min max 0-1 stretch. Then reverse it and add 1 sdo the repeated values are from 1-20.
minKey = keys.reduce(ee.Reducer.min())
maxKey = keys.reduce(ee.Reducer.max())
def normedn(n):
return (ee.Number(n).subtract(minKey)).divide(ee.Number(minKey).add(maxKey))
def normedreverse(n):
return ee.Number(n).multiply(-1).add(1).multiply(20).int16()
normedkeys = keys.map(normedn)
normed = normedkeys.map(normedreverse)
#Zip them together
zipped = keys.zip(normed)
def keyWeight(kw):
keyWeight = ee.List(kw)
key = keyWeight.get(0)
weight = keyWeight.get(1)
#Get images for given dayDiff.
imgs = matches.filter(ee.Filter.eq('dayDiff',ee.Number(key)))
def keyweightrepeat(img):
return ee.ImageCollection(ee.List.repeat(ee.Image(img),ee.Number(weight)))
#Repeat the images based on the weight.
rep = ee.ImageCollection(ee.FeatureCollection(imgs.map(keyweightrepeat)).flatten())
return rep
repeated = zipped.map(keyWeight)
#Flatten and compute median
out = ee.ImageCollection(ee.FeatureCollection(repeated).flatten()).median()
return ee.Image(out)
def setJulian(self,img):
"""Function for setting start and end julians based on system:time_start. Assumes a 14 day diff inclusive of the first day."""
d = ee.Date(img.get('system:time_start'))
startJulian = d.getRelative('day','year')
endJulian = startJulian.add(13)
return img.set({'startJulian':startJulian,'endJulian':endJulian})
def simpleAddIndices(self,in_image):
"""Function for only adding common indices."""
in_image = in_image.addBands(in_image.normalizedDifference(['nir','red']).select([0],['NDVI']))
in_image = in_image.addBands(in_image.normalizedDifference(['nir','swir2']).select([0], ['NBR']))
in_image = in_image.addBands(in_image.normalizedDifference(['nir','swir1']).select([0], ['NDMI']))
in_image = in_image.addBands(in_image.normalizedDifference(['green','swir1']).select([0], ['NDSI']))
return in_image
def cReducer(self,img):
m = img.mask().reduce(ee.Reducer.min()).focal_min(3.5)
return img.updateMask(m)
def joinedmerge(self,img):
return ee.Image(self.mergeMany(img,'matches','dayDiff'))
def joinedmerge2(self,l):
def joinedmerge(img):
return ee.Image(self.mergeMany(img,'matches','dayDiff'))
l = l.map(joinedmerge)
return ee.ImageCollection(l)
#Find the t2-t1 difference for each time period.
def joineddiff(self,img):
t1T = img.select(['.*_2014'])
t2T = img.select(['.*_2016'])
return img.addBands(t2T.subtract(t1T).rename(self.bnsDiff))
def addsuffix(self,l,suffix):
def base(bn):
return ee.String(bn).cat(suffix)
return l.map(base)
def exportMap(self,img,studyArea):
img = img
ed = str(postYear)
sd = str(preYearPrimary)
regionName = ProcessingRegion.replace(" ",'_') + "_"
task_ordered= ee.batch.Export.image.toAsset(image=img.clip(studyArea),
description = regionName + '_Diff_Comp_rSA_2lst_' + sd + '_' + ed,
assetId = self.exportPath + regionName + '_Diff_Comp' + sd + '_' + ed,
region = studyArea.bounds().getInfo()['coordinates'],
maxPixels = 1e13,
crs = self.epsg,
scale = 30)
task_ordered.start()
print('Export Started: ',self.exportPath + regionName + '_Diff_Comp' + sd + '_' + ed)
def main(self,ProcessingRegion,postYear,preYearPrimary,preYearSecondary,exportImg=False):
studyArea = self.ecoregions.filter(ee.Filter.eq("PROVINCIA", ProcessingRegion)).geometry().buffer(1000)
c = ee.ImageCollection(self.biweeklyIC).filter(ee.Filter.eq('regionName',ProcessingRegion)).map(self.cReducer).map(self.simpleAddIndices)
bns = ee.List(['blue','green','red','nir','swir1','swir2','NDVI','NBR','NDMI'])
c = c.select(bns)
#Append endings to band names
bnsT1 = self.addsuffix(bns,'_2014')
bnsT2 = self.addsuffix(bns,'_2016')
self.bnsDiff = self.addsuffix(bns,'_2014_2016_diff')
#Filter off the two years of data
t1 = c.filter(ee.Filter.calendarRange(preYearPrimary,preYearSecondary,'year')).select(bns,bnsT1).map(self.setJulian)
t2 = c.filter(ee.Filter.calendarRange(postYear,postYear,'year')).select(bns,bnsT2).map(self.setJulian)
print(t2.first().bandNames().getInfo())
joined = ee.ImageCollection(self.smartJoin(t2,t1,self.nDayBuffer))
joined = joined.toList(500)#.map(self.joinedmerge)
joined = self.joinedmerge2(joined)
print(joined.first().bandNames().getInfo(),'join')
diff = joined.map(self.joineddiff)
diffMedian = diff.median()
diffCount = diff.select(['.*_diff']).count().reduce(ee.Reducer.min())
diffMedian = diffMedian.updateMask(diffCount.gte(self.diffCountMin))
print(diffMedian.getInfo())
if exportImg:
self.exportMap(diffMedian,studyArea)
return diffMedian
if __name__ == "__main__":
ee.Initialize()
ProcessingRegion = 'GALAPAGOS'
postYear = 2016
preYearPrimary = 2014
preYearSecondary = 2013
exportImg = True
diffMedian().main(ProcessingRegion,postYear,preYearPrimary,preYearSecondary,exportImg)