-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlandsat8.py
557 lines (400 loc) · 19.8 KB
/
landsat8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# Sentinel-2 package
import ee
from Py6S import *
import math
import datetime
import os, sys
from utils import *
import sun_angles
import view_angles
import time
class env(object):
def __init__(self):
"""Initialize the environment."""
# Initialize the Earth Engine object, using the authentication credentials.
ee.Initialize()
self.dem = ee.Image("USGS/SRTMGL1_003")
self.epsg = "EPSG:32717"
##########################################
# variable for the landsat data request #
##########################################
self.metadataCloudCoverMax = 60;
##########################################
# Export variables #
##########################################
self.assetId ="projects/Sacha/L8/"
self.name = "landsat_SR_Biweek_"
self.exportScale = 30
##########################################
# variable for the shadowMask algorithm #
##########################################
# zScoreThresh: Threshold for cloud shadow masking- lower number masks out
# less. Between -0.8 and -1.2 generally works well
self.zScoreThresh = -1
# shadowSumThresh: Sum of IR bands to include as shadows within TDOM and the
# shadow shift method (lower number masks out less)
self.shadowSumThresh = 0.35;
# contractPixels: The radius of the number of pixels to contract (negative buffer) clouds and cloud shadows by. Intended to eliminate smaller cloud
# patches that are likely errors (1.5 results in a -1 pixel buffer)(0.5 results in a -0 pixel buffer)
# (1.5 or 2.5 generally is sufficient)
self.contractPixels = 1.5;
# dilatePixels: The radius of the number of pixels to dilate (buffer) clouds
# and cloud shadows by. Intended to include edges of clouds/cloud shadows
# that are often missed (1.5 results in a 1 pixel buffer)(0.5 results in a 0 pixel buffer)
# (2.5 or 3.5 generally is sufficient)
self.dilatePixels = 2.5;
##########################################
# variable for cloudScore algorithm #
##########################################
# 9. Cloud and cloud shadow masking parameters.
# If cloudScoreTDOM is chosen
# cloudScoreThresh: If using the cloudScoreTDOMShift method-Threshold for cloud
# masking (lower number masks more clouds. Between 10 and 30 generally works best)
self.cloudScoreThresh = 20;
# Percentile of cloud score to pull from time series to represent a minimum for
# the cloud score over time for a given pixel. Reduces commission errors over
# cool bright surfaces. Generally between 5 and 10 works well. 0 generally is a bit noisy
self.cloudScorePctl = 5;
self.hazeThresh = 200
##########################################
# variable for terrain algorithm #
##########################################
self.terrainScale = 300
##########################################
# variable band selection #
##########################################
self.divideBands = ee.List(['blue','green','red','nir','swir1','swir2'])
self.bandNamesLandsat = ee.List(['blue','green','red','nir','swir1','thermal','swir2','sr_atmos_opacity','pixel_qa','radsat_qa'])
self.sensorBandDictLandsatSR = ee.Dictionary({'L8' : ee.List([1,2,3,4,5,7,6,9,10,11])})
##########################################
# enable / disable modules #
##########################################
self.maskSR = True
self.cloudMask = True
self.hazeMask = True
self.shadowMask = True
self.brdfCorrect = True
self.terrainCorrection = True
class functions():
def __init__(self):
"""Initialize the Surfrace Reflectance app."""
# get the environment
self.env = env()
def main(self,studyArea,startDate,endDate,startDay,endDay,week):
self.env.startDate = startDate
self.env.endDate = endDate
self.env.startDoy = startDay
self.env.endDoy = endDay
#studyArea = ee.FeatureCollection("users/apoortinga/countries/Ecuador_nxprovincias").geometry().bounds();
landsat8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterDate(self.env.startDate,self.env.endDate).filterBounds(studyArea)
landsat8 = landsat8.filterMetadata('CLOUD_COVER','less_than',self.env.metadataCloudCoverMax)
landsat8 = landsat8.select(self.env.sensorBandDictLandsatSR.get('L8'),self.env.bandNamesLandsat)
print(landsat8.size().getInfo())
if landsat8.size().getInfo() > 0:
# mask clouds using the QA band
if self.env.maskSR == True:
print("removing clouds")
landsat8 = landsat8.map(self.CloudMaskSRL8)
# mask clouds using cloud mask function
if self.env.hazeMask == True:
print("removing haze")
landsat8 = landsat8.map(self.maskHaze)
# mask clouds using cloud mask function
if self.env.shadowMask == True:
print("shadow masking")
landsat8 = self.maskShadows(landsat8,studyArea)
landsat8 = landsat8.map(self.scaleLandsat)
# mask clouds using cloud mask function
if self.env.cloudMask == True:
print("removing some more clouds")
landsat8 = landsat8.map(self.maskClouds)
if self.env.brdfCorrect == True:
landsat8 = landsat8.map(self.brdf)
if self.env.terrainCorrection == True:
print("terrain correction")
landsat8 = ee.ImageCollection(landsat8.map(self.terrain))
print("calculating medoid")
img = self.medoidMosaic(landsat8)
print("rescale")
img = self.reScaleLandsat(img)
print("set MetaData")
img = self.setMetaData(img)
print("exporting composite")
self.exportMap(img,studyArea,week)
def CloudMaskSRL8(self,img):
"""apply cf-mask Landsat"""
QA = img.select("pixel_qa")
shadow = QA.bitwiseAnd(8).neq(0);
cloud = QA.bitwiseAnd(32).neq(0);
return img.updateMask(shadow.Not()).updateMask(cloud.Not()).copyProperties(img)
def scaleLandsat(self,img):
"""Landast is scaled by factor 0.0001 """
thermal = img.select(ee.List(['thermal'])).multiply(0.1)
scaled = ee.Image(img).select(self.env.divideBands).multiply(ee.Number(0.0001))
return img.select([]).addBands(scaled).addBands(thermal)
def reScaleLandsat(self,img):
"""Landast is scaled by factor 0.0001 """
thermalBand = ee.List(['thermal'])
thermal = ee.Image(img).select(thermalBand).multiply(10)
otherBands = ee.Image(img).bandNames().removeAll(thermalBand)
scaled = ee.Image(img).select(otherBands).divide(0.0001)
image = ee.Image(scaled.addBands(thermal)).int16()
return image.copyProperties(img)
def maskHaze(self,img):
""" mask haze """
opa = ee.Image(img.select(['sr_atmos_opacity']).multiply(0.001))
haze = opa.gt(self.env.hazeThresh)
return img.updateMask(haze.Not())
def maskClouds(self,img):
"""
Computes spectral indices of cloudyness and take the minimum of them.
Each spectral index is fairly lenient because the group minimum
is a somewhat stringent comparison policy. side note -> this seems like a job for machine learning :)
originally written by Matt Hancher for Landsat imageryadapted to Sentinel by Chris Hewig and Ian Housman
"""
score = ee.Image(1.0);
# Clouds are reasonably bright in the blue band.
blue_rescale = img.select('blue').subtract(ee.Number(0.1)).divide(ee.Number(0.3).subtract(ee.Number(0.1)))
score = score.min(blue_rescale);
# Clouds are reasonably bright in all visible bands.
visible = img.select('red').add(img.select('green')).add(img.select('blue'))
visible_rescale = visible.subtract(ee.Number(0.2)).divide(ee.Number(0.8).subtract(ee.Number(0.2)))
score = score.min(visible_rescale);
# Clouds are reasonably bright in all infrared bands.
infrared = img.select('nir').add(img.select('swir1')).add(img.select('swir2'))
infrared_rescale = infrared.subtract(ee.Number(0.3)).divide(ee.Number(0.8).subtract(ee.Number(0.3)))
score = score.min(infrared_rescale);
# Clouds are reasonably cool in temperature.
temp_rescale = img.select('thermal').subtract(ee.Number(300)).divide(ee.Number(290).subtract(ee.Number(300)))
score = score.min(temp_rescale);
# However, clouds are not snow.
ndsi = img.normalizedDifference(['green', 'swir1']);
ndsi_rescale = ndsi.subtract(ee.Number(0.8)).divide(ee.Number(0.6).subtract(ee.Number(0.8)))
score = score.min(ndsi_rescale).multiply(100).byte();
mask = score.lt(self.env.cloudScoreThresh).rename(['cloudMask']);
img = img.updateMask(mask);
return img;
def maskShadows(self,collection,studyArea):
def TDOM(image):
zScore = image.select(shadowSumBands).subtract(irMean).divide(irStdDev)
irSum = image.select(shadowSumBands).reduce(ee.Reducer.sum())
TDOMMask = zScore.lt(self.env.zScoreThresh).reduce(ee.Reducer.sum()).eq(2)\
.And(irSum.lt(self.env.shadowSumThresh)).Not()
TDOMMask = TDOMMask.focal_min(self.env.dilatePixels)
return image.updateMask(TDOMMask)
shadowSumBands = ['nir','swir1']
self.fullCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterBounds(studyArea).select(self.env.sensorBandDictLandsatSR.get('L8'),self.env.bandNamesLandsat)
# Get some pixel-wise stats for the time series
irStdDev = self.fullCollection.select(shadowSumBands).reduce(ee.Reducer.stdDev())
irMean = self.fullCollection.select(shadowSumBands).reduce(ee.Reducer.mean())
# Mask out dark dark outliers
collection_tdom = collection.map(TDOM)
return collection_tdom
def terrain(self,img):
degree2radian = 0.01745;
thermalBand = img.select(['thermal'])
def topoCorr_IC(img):
dem = ee.Image("USGS/SRTMGL1_003")
# Extract image metadata about solar position
SZ_rad = ee.Image.constant(ee.Number(img.get('SOLAR_ZENITH_ANGLE'))).multiply(degree2radian).clip(img.geometry().buffer(10000));
SA_rad = ee.Image.constant(ee.Number(img.get('SOLAR_AZIMUTH_ANGLE'))).multiply(degree2radian).clip(img.geometry().buffer(10000));
# Creat terrain layers
slp = ee.Terrain.slope(dem).clip(img.geometry().buffer(10000));
slp_rad = ee.Terrain.slope(dem).multiply(degree2radian).clip(img.geometry().buffer(10000));
asp_rad = ee.Terrain.aspect(dem).multiply(degree2radian).clip(img.geometry().buffer(10000));
# Calculate the Illumination Condition (IC)
# slope part of the illumination condition
cosZ = SZ_rad.cos();
cosS = slp_rad.cos();
slope_illumination = cosS.expression("cosZ * cosS", \
{'cosZ': cosZ, 'cosS': cosS.select('slope')});
# aspect part of the illumination condition
sinZ = SZ_rad.sin();
sinS = slp_rad.sin();
cosAziDiff = (SA_rad.subtract(asp_rad)).cos();
aspect_illumination = sinZ.expression("sinZ * sinS * cosAziDiff", \
{'sinZ': sinZ, \
'sinS': sinS, \
'cosAziDiff': cosAziDiff});
# full illumination condition (IC)
ic = slope_illumination.add(aspect_illumination);
# Add IC to original image
img_plus_ic = ee.Image(img.addBands(ic.rename(['IC'])).addBands(cosZ.rename(['cosZ'])).addBands(cosS.rename(['cosS'])).addBands(slp.rename(['slope'])));
return ee.Image(img_plus_ic);
def topoCorr_SCSc(img):
img_plus_ic = img;
mask1 = img_plus_ic.select('nir').gt(-0.1);
mask2 = img_plus_ic.select('slope').gte(5) \
.And(img_plus_ic.select('IC').gte(0)) \
.And(img_plus_ic.select('nir').gt(-0.1));
img_plus_ic_mask2 = ee.Image(img_plus_ic.updateMask(mask2));
bandList = ['blue', 'green', 'red', 'nir', 'swir1', 'swir2']; # Specify Bands to topographically correct
def applyBands(image):
blue = apply_SCSccorr('blue').select(['blue'])
green = apply_SCSccorr('green').select(['green'])
red = apply_SCSccorr('red').select(['red'])
nir = apply_SCSccorr('nir').select(['nir'])
swir1 = apply_SCSccorr('swir1').select(['swir1'])
swir2 = apply_SCSccorr('swir2').select(['swir2'])
return replace_bands(image, [blue, green, red, nir, swir1, swir2])
def apply_SCSccorr(band):
method = 'SCSc';
out = img_plus_ic_mask2.select('IC', band).reduceRegion(reducer= ee.Reducer.linearFit(), \
geometry= ee.Geometry(img.geometry().buffer(-5000)), \
scale= self.env.terrainScale, \
maxPixels = 1e13);
out_a = ee.Number(out.get('scale'));
out_b = ee.Number(out.get('offset'));
out_c = ee.Number(out.get('offset')).divide(ee.Number(out.get('scale')));
# apply the SCSc correction
SCSc_output = img_plus_ic_mask2.expression("((image * (cosB * cosZ + cvalue)) / (ic + cvalue))", {
'image': img_plus_ic_mask2.select([band]),
'ic': img_plus_ic_mask2.select('IC'),
'cosB': img_plus_ic_mask2.select('cosS'),
'cosZ': img_plus_ic_mask2.select('cosZ'),
'cvalue': out_c });
return ee.Image(SCSc_output);
#img_SCSccorr = ee.Image([apply_SCSccorr(band) for band in bandList]).addBands(img_plus_ic.select('IC'));
img_SCSccorr = applyBands(img).select(bandList).addBands(img_plus_ic.select('IC'))
bandList_IC = ee.List([bandList, 'IC']).flatten();
img_SCSccorr = img_SCSccorr.unmask(img_plus_ic.select(bandList_IC)).select(bandList);
return img_SCSccorr.unmask(img_plus_ic.select(bandList))
img = topoCorr_IC(img)
img = topoCorr_SCSc(img)
return img.addBands(thermalBand)
def brdf(self,img):
import sun_angles
import view_angles
def _apply(image, kvol, kvol0):
blue = _correct_band(image, 'blue', kvol, kvol0, f_iso=0.0774, f_geo=0.0079, f_vol=0.0372)
green = _correct_band(image, 'green', kvol, kvol0, f_iso=0.1306, f_geo=0.0178, f_vol=0.0580)
red = _correct_band(image, 'red', kvol, kvol0, f_iso=0.1690, f_geo=0.0227, f_vol=0.0574)
nir = _correct_band(image, 'nir', kvol, kvol0, f_iso=0.3093, f_geo=0.0330, f_vol=0.1535)
swir1 = _correct_band(image, 'swir1', kvol, kvol0, f_iso=0.3430, f_geo=0.0453, f_vol=0.1154)
swir2 = _correct_band(image, 'swir2', kvol, kvol0, f_iso=0.2658, f_geo=0.0387, f_vol=0.0639)
return replace_bands(image, [blue, green, red, nir, swir1, swir2])
def _correct_band(image, band_name, kvol, kvol0, f_iso, f_geo, f_vol):
"""fiso + fvol * kvol + fgeo * kgeo"""
iso = ee.Image(f_iso)
geo = ee.Image(f_geo)
vol = ee.Image(f_vol)
pred = vol.multiply(kvol).add(geo.multiply(kvol)).add(iso).rename(['pred'])
pred0 = vol.multiply(kvol0).add(geo.multiply(kvol0)).add(iso).rename(['pred0'])
cfac = pred0.divide(pred).rename(['cfac'])
corr = image.select(band_name).multiply(cfac).rename([band_name])
return corr
def _kvol(sunAz, sunZen, viewAz, viewZen):
"""Calculate kvol kernel.
From Lucht et al. 2000
Phase angle = cos(solar zenith) cos(view zenith) + sin(solar zenith) sin(view zenith) cos(relative azimuth)"""
relative_azimuth = sunAz.subtract(viewAz).rename(['relAz'])
pa1 = viewZen.cos() \
.multiply(sunZen.cos())
pa2 = viewZen.sin() \
.multiply(sunZen.sin()) \
.multiply(relative_azimuth.cos())
phase_angle1 = pa1.add(pa2)
phase_angle = phase_angle1.acos()
p1 = ee.Image(PI().divide(2)).subtract(phase_angle)
p2 = p1.multiply(phase_angle1)
p3 = p2.add(phase_angle.sin())
p4 = sunZen.cos().add(viewZen.cos())
p5 = ee.Image(PI().divide(4))
kvol = p3.divide(p4).subtract(p5).rename(['kvol'])
viewZen0 = ee.Image(0)
pa10 = viewZen0.cos() \
.multiply(sunZen.cos())
pa20 = viewZen0.sin() \
.multiply(sunZen.sin()) \
.multiply(relative_azimuth.cos())
phase_angle10 = pa10.add(pa20)
phase_angle0 = phase_angle10.acos()
p10 = ee.Image(PI().divide(2)).subtract(phase_angle0)
p20 = p10.multiply(phase_angle10)
p30 = p20.add(phase_angle0.sin())
p40 = sunZen.cos().add(viewZen0.cos())
p50 = ee.Image(PI().divide(4))
kvol0 = p30.divide(p40).subtract(p50).rename(['kvol0'])
return (kvol, kvol0)
date = img.date()
footprint = determine_footprint(img)
(sunAz, sunZen) = sun_angles.create(date, footprint)
(viewAz, viewZen) = view_angles.create(footprint)
(kvol, kvol0) = _kvol(sunAz, sunZen, viewAz, viewZen)
return _apply(img, kvol.multiply(PI()), kvol0.multiply(PI()))
def medoidMosaic(self,collection):
""" medoid composite with equal weight among indices """
bandNames = ee.Image(collection.first()).bandNames()
otherBands = bandNames.removeAll(self.env.divideBands)
others = collection.select(otherBands).reduce(ee.Reducer.mean()).rename(otherBands);
collection = collection.select(self.env.divideBands)
bandNumbers = ee.List.sequence(1,self.env.divideBands.length());
median = ee.ImageCollection(collection).median()
def subtractmedian(img):
diff = ee.Image(img).subtract(median).pow(ee.Image.constant(2));
return diff.reduce('sum').addBands(img);
medoid = collection.map(subtractmedian)
medoid = ee.ImageCollection(medoid).reduce(ee.Reducer.min(self.env.divideBands.length().add(1))).select(bandNumbers,self.env.divideBands);
return medoid.addBands(others);
def medianMosaic(self,collection):
""" median composite """
median = collection.select(medianIncludeBands).median();
othersBands = bandNames.removeAll(medianIncludeBands);
others = collection.select(otherBands).mean();
return median.addBands(others)
def setMetaData(self,img):
""" add metadata to image """
img = ee.Image(img).set({'system:time_start':ee.Date(self.env.startDate).millis(), \
'startDOY':str(self.env.startDoy), \
'endDOY':str(self.env.endDoy), \
'useCloudScore':str(self.env.cloudMask), \
'useTDOM':str(self.env.shadowMask), \
'useSRmask':str(self.env.maskSR ), \
'useCloudProject':str(self.env.cloudMask), \
'terrain':str(self.env.terrainCorrection), \
'cloudScoreThresh':str(self.env.cloudScoreThresh), \
'cloudScorePctl':str(self.env.cloudScorePctl), \
'zScoreThresh':str(self.env.zScoreThresh), \
'shadowSumThresh':str(self.env.shadowSumThresh), \
'contractPixels':str(self.env.contractPixels), \
'cloudFilter':str(self.env.metadataCloudCoverMax),\
'crs':str(self.env.epsg), \
'dilatePixels':str(self.env.dilatePixels)})
return img
def exportMap(self,img,studyArea,week):
geom = studyArea.geometry().bounds().getInfo();
task_ordered= ee.batch.Export.image.toAsset(image=img.clip(studyArea),
description = self.env.name + str(week),
assetId= self.env.assetId + self.env.name + str(week).zfill(3),
region=geom['coordinates'],
maxPixels=1e13,
crs=self.env.epsg,
scale=self.env.exportScale)
task_ordered.start()
if __name__ == "__main__":
ee.Initialize()
studyArea = ee.FeatureCollection("users/apoortinga/countries/Ecuador_nxprovincias") #.geometry() #.bounds();
# 2015
year = ee.Date("2016-01-01")
startWeek = 39
startDay = [168,182,196,210,224,238,252,266,280,294,308,322,336,350,364]
endDay = [181,195,209,223,237,251,265,279,293,307,321,335,349,363,377]
# 2016
year = ee.Date("2016-01-01")
startWeek = 54
startDay = [13,27,41,55,69,83,97,111,125,139,153,167,181,195,209,223,237,251,265,279,293,307,321,335,349,363]
endDay = [26,40,54,68,82,96,110,124,138,152,166,180,194,208,222,236,250,264,278,292,306,320,334,348,362,376]
# 2017
year = ee.Date("2017-01-01")
startWeek = 80
startDay = [11,25,39,53,67,81,95,109,123,137,151,165,179,193,207,221,235,249,263,277,291,305,319,333,347,361]
endDay = [24,38,52,66,80,94,108,122,136,150,164,178,192,206,220,234,248,262,276,290,304,318,332,346,360,374]
# 2018
year = ee.Date("2018-01-01")
startWeek = 106
startDay = [10,24,38,52,66,80,94,108,122,136,150,164,178,192,206,220,234,248,262,276,290,304,318,332,346,360]
endDay = [23,37,51,65,79,93,107,121,135,149,163,177,191,205,219,233,247,261,275,289,303,317,331,345,359,373]
for i in range(2,3,1):
startDate = year.advance(startDay[i],"day")
endDate = year.advance(endDay[i],"day")
functions().main(studyArea,startDate,endDate,startDay[i],endDay[i],startWeek+i)