-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing_IMPLEMENT.R
384 lines (226 loc) · 13.1 KB
/
data_processing_IMPLEMENT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
## 1. Data processing::Biodiversity This file takes- eDNA data obtained from
## soil samples and prepares it for further analysis. Note that there were three
## primers used, one for mammals and two for invertebrates.
## Load packages
library(plyr)
library(dplyr)
library(vegan)
## Set variables
rare <- 1 # minimum times do you need to detect a species to include.
minAbun <- 50 # minimum number of reads for a species to include.
perm <- 99999 # number of permutations to use
cleanup <- TRUE
## define groupings
allSites <- "^id$|SFX[0-9][0-9]"
cocoaSites <- "^id$|[0-9][0-9]C"
pastureSites <- "^id$|[0-9][0-9]P"
forestSites <- "^id$|[0-9][0-9]F"
invertBind <- function(inputOTU1, inputOTU2) {
# fill in non-overlapping columns with 0s
inputOTU1[setdiff(names(inputOTU2), names(inputOTU1))] <- 0
inputOTU2[setdiff(names(inputOTU1), names(inputOTU2))] <- 0
temp <- rbind(inputOTU1, inputOTU2)
return(temp)
}
# ----- Import the motu datasets -----------------------------------
gilletData <- read.csv("PilotFarmData/Gillet_SFX.csv", sep = ",", quote = "\'")
riazData <- read.csv("PilotFarmData/Riaz_SFX.csv", sep = ",", quote = "\'")
zealeData <- read.csv("PilotFarmData/Zeale_SFX.csv", sep = ",", quote = "\'")
sum(rowSums(riazData[ , grepl(x = colnames(riazData), pattern = "_2g")])>0)
# riaz has a whole bunch of extra 0s, for some reason.
sum(rowSums(gilletData[ , grepl(x = colnames(gilletData), pattern = "_2")])>0)
sum(rowSums(zealeData[ , grepl(x = colnames(zealeData), pattern = "_2")])>0)
## ----- Remove suspicious plots ----------------------------
riazData <- dplyr::select(riazData, !(SFX6_2g | SFX6_20g))
# plot had an abnormally high amount of cow reads
sum(rowSums(riazData[ , grepl(x = colnames(riazData), pattern = "_2")])>0)
sum(rowSums(riazData[ , grepl(x = colnames(riazData), pattern = "_2g")])>0)
gilletData <- dplyr::select(gilletData, !(SFX39_2))
# There is no SFX39
## ----- Remove bad phylums & 0s --------------------------
gilletData <- gilletData[gilletData$phylum == "Arthropoda", ]
zealeData <- zealeData[zealeData$phylum == "Arthropoda", ]
riazData <- riazData[riazData$total_reads > 0, ]
gilletData <- gilletData[gilletData$total_reads > 0 , ]
zealeData <- zealeData[zealeData$total_reads > 0 , ]
invertData <- invertBind(gilletData,zealeData)
sum(rowSums(invertData[ , grepl(x = colnames(invertData), pattern = "_")]) > 0)
# ----- Import key species tables -----------------------------------
keyVertSpecies <- read.csv("PilotFarmData/KeyVertebrates.csv")
keyInvertSpecies <- read.csv("PilotFarmData/KeyInvertebrates.csv")
# this should be an identifier for keySpecies
keyVertList <- keyVertSpecies$id[keyVertSpecies$endangered %in%
c("vulnerable", "decreasing", "extinct")]
vertList <- keyVertSpecies$id[keyVertSpecies$keySpecies == "yes"]
keyInvertList <- keyInvertSpecies$id[keyInvertSpecies$keySpecies == "yes"]
# Import lookup table, which has field codes and the codes the Salford lab used
siteLookup <- read.csv("PilotFarmData/Lookup_SFX.csv")
# ----- Split the OTU datasets in to 2 gram and 20 gram methods --------------
riazData_2 <-
riazData[, grepl(x = colnames(riazData), pattern = "^id$|_2g|king|phy|cla|ord|fam|gen|spe|pid|eva|tot|seq")]
riazData_20 <-
riazData[, grepl(x = colnames(riazData), pattern = "^id$|_20g|king|phy|cla|ord|fam|gen|spe|pid|eva|tot|seq")]
sum(rowSums(riazData[ , grepl(x = colnames(riazData), pattern = "_2g")])>0)
sum(rowSums(riazData_2[ , grepl(x = colnames(riazData_2), pattern = "_2g")])>0)
sum(rowSums(riazData_20[ , grepl(x = colnames(riazData_20), pattern = "_20g")])>0)
# update total abundances.
riazData_2$total_reads <- rowSums(riazData_2[ , grepl(x = colnames(riazData_2), pattern = "_2g")])
riazData_20$total_reads <- rowSums(riazData_20[ , grepl(x = colnames(riazData_20), pattern = "_20g")])
gilletData_2 <-
gilletData[, grepl(x = colnames(gilletData), pattern = "^id$|_2$|king|phy|cla|ord|fam|gen|spe|pid|eva|tot|seq")]
gilletData_20 <-
gilletData[, grepl(x = colnames(gilletData), pattern = "^id$|_20|king|phy|cla|ord|fam|gen|spe|pid|eva|tot|seq")]
sum(rowSums(gilletData[ , grepl(x = colnames(gilletData), pattern = "_2$")])>0)
sum(rowSums(gilletData_2[ , grepl(x = colnames(gilletData_2), pattern = "_2$")])>0)
sum(rowSums(gilletData_20[ , grepl(x = colnames(gilletData_20), pattern = "_20")])>0)
# update total abundances.
gilletData_2$total_reads <- rowSums(gilletData_2[ , grepl(x = colnames(gilletData_2), pattern = "_2")])
gilletData_20$total_reads <- rowSums(gilletData_20[ , grepl(x = colnames(gilletData_20), pattern = "_20")])
zealeData_2 <-
zealeData[, grepl(x = colnames(zealeData), pattern = "^id$|_2$|king|phy|cla|ord|fam|gen|spe|pid|eva|tot|seq")]
zealeData_20 <-
zealeData[, grepl(x = colnames(zealeData), pattern = "^id$|_20|king|phy|cla|ord|fam|gen|spe|pid|eva|tot|seq")]
sum(rowSums(zealeData[ , grepl(x = colnames(zealeData), pattern = "_2$")])>0)
sum(rowSums(zealeData_2[ , grepl(x = colnames(zealeData_2), pattern = "_2$")])>0)
sum(rowSums(zealeData_20[ , grepl(x = colnames(zealeData_20), pattern = "_20")])>0)
# update total abundances.
zealeData_2$total_reads <- rowSums(zealeData_2[ , grepl(x = colnames(zealeData_2), pattern = "_2")])
zealeData_20$total_reads <- rowSums(zealeData_20[ , grepl(x = colnames(zealeData_20), pattern = "_20")])
## Replace the sample IDs used by the lab with the field ones.
colnames(riazData_2) <- mapvalues(colnames(riazData_2),
from = siteLookup$riazCode2,
to = siteLookup$updatedPlot)
colnames(riazData_20) <- mapvalues(colnames(riazData_20),
from = siteLookup$riazCode20,
to = siteLookup$updatedPlot)
colnames(gilletData_2) <- mapvalues(colnames(gilletData_2),
from = siteLookup$labCode2,
to = siteLookup$updatedPlot)
colnames(gilletData_20) <- mapvalues(colnames(gilletData_20),
from = siteLookup$labCode20,
to = siteLookup$updatedPlot)
colnames(zealeData_2) <- mapvalues(colnames(zealeData_2),
from = siteLookup$labCode2,
to = siteLookup$updatedPlot)
colnames(zealeData_20) <- mapvalues(colnames(zealeData_20),
from = siteLookup$labCode20,
to = siteLookup$updatedPlot)
## ----- Implement rare and minAbun filters ------------------------------
## Now that protocols have been separated, remove from each MOTUs with fewer
## reads than the chosen minimum abundance.
riazData_2 <- riazData_2[riazData_2$total_reads > minAbun, ]
riazData_20 <- riazData_20[riazData_20$total_reads > minAbun, ]
gilletData_2 <- gilletData_2[gilletData_2$total_reads > minAbun , ]
gilletData_20 <- gilletData_20[gilletData_20$total_reads > minAbun , ]
zealeData_2 <- zealeData_2[zealeData_2$total_reads > minAbun , ]
zealeData_20 <- zealeData_20[zealeData_20$total_reads > minAbun , ]
## And now remove MOTUs with fewer observations than minimum.
riazData_2 <- riazData_2[rowSums(riazData_2[, grepl(x = colnames(riazData_2), pattern = "-")] > 0) >= rare, ]
riazData_20 <- riazData_20[rowSums(riazData_20[, grepl(x = colnames(riazData_20), pattern = "-")] > 0) >= rare, ]
gilletData_2 <- gilletData_2[rowSums(gilletData_2[, grepl(x = colnames(gilletData_2), pattern = "-")] > 0) >= rare, ]
gilletData_20 <- gilletData_20[rowSums(gilletData_20[, grepl(x = colnames(gilletData_20), pattern = "-")] > 0) >= rare, ]
zealeData_2 <- zealeData_2[rowSums(zealeData_2[, grepl(x = colnames(zealeData_2), pattern = "-")] > 0) >= rare, ]
zealeData_20 <- zealeData_20[rowSums(zealeData_20[, grepl(x = colnames(zealeData_20), pattern = "-")] > 0) >= rare, ]
## Now smush the two invert datasets together (Gillet and Zeale primers)
any(gilletData$sequence %in% zealeData$sequence)
invertData_2 <- invertBind(gilletData_2,zealeData_2)
invertData_20 <- invertBind(gilletData_20,zealeData_20)
sum(rowSums(invertData_2[ , grepl(x = colnames(invertData_2), pattern = "-")])>0)
sum(rowSums(gilletData_20[ , grepl(x = colnames(gilletData_20), pattern = "-")])>0)
sum(rowSums(zealeData_20[ , grepl(x = colnames(zealeData_20), pattern = "-")])>0)
sum(rowSums(invertData_20[ , grepl(x = colnames(invertData_20), pattern = "-")])>0)
# good, matches as expected
if(cleanup == T) {
remove(gilletData,
gilletData_2,
gilletData_20,
zealeData,
zealeData_2,
zealeData_20)
}
## ------- Subset the eDNA data -------------------------------------
# Reads only tables for site/species matrices
riazData_2_ReadsOnly <- riazData_2[ , grepl(allSites, colnames(riazData_2))]
riazData_20_ReadsOnly <- riazData_20[ , grepl(allSites, colnames(riazData_20))]
invert_2_ReadsOnly <- invertData_2[ , grepl(allSites, colnames(invertData_2))]
invert_20_ReadsOnly <- invertData_20[ , grepl(allSites, colnames(invertData_20))]
# Cocoa fields
riazData_2_cocoaOnly <- riazData_2[ , grepl(cocoaSites, colnames(riazData_2))]
riazData_20_cocoaOnly <- riazData_20[ , grepl(cocoaSites, colnames(riazData_20))]
invert_2_cocoaOnly <- invertData_2[ , grepl(cocoaSites, colnames(invertData_2))]
invert_20_cocoaOnly <- invertData_20[ , grepl(cocoaSites, colnames(invertData_20))]
# Pastures
riazData_2_pastureOnly <- riazData_2[ , grepl(pastureSites, colnames(riazData_2))]
riazData_20_pastureOnly <- riazData_20[ , grepl(pastureSites, colnames(riazData_20))]
invert_2_pastureOnly <- invertData_2[ , grepl(pastureSites, colnames(invertData_2))]
invert_20_pastureOnly <- invertData_20[ , grepl(pastureSites, colnames(invertData_20))]
# forests
riazData_2_forestOnly <- riazData_2[ , grepl(forestSites, colnames(riazData_2))]
riazData_20_forestOnly <- riazData_20[ , grepl(forestSites, colnames(riazData_20))]
invert_2_forestOnly <- invertData_2[ , grepl(forestSites, colnames(invertData_2))]
invert_20_forestOnly <- invertData_20[ , grepl(forestSites, colnames(invertData_20))]
## ----- Species x Site and Site x Species ---------------------------------
## Create species x site and site x species tables for analysis. different
## packages want them in different ways.
# speciesSite <- function(inputOTU, rare = 0) {
# temp <- inputOTU[rowSums(inputOTU[-1]) > rare,]
# return(temp)
# }
siteSpecies <- function(inputOTU) {
temp <- as.data.frame(inputOTU, row.names = inputOTU$id)
temp <- as.data.frame(t(temp[-1]))
colnames(temp) <- inputOTU$id
return(temp)
}
# Inverts
invert_2_siteSpecies <- siteSpecies(invert_2_ReadsOnly)
invert_20_siteSpecies <- siteSpecies(invert_20_ReadsOnly)
sum(rowSums(invert_2_ReadsOnly[ , grepl(x = colnames(invert_2_ReadsOnly), pattern = "-")])>0)
sum(colSums(invert_2_siteSpecies[grepl(x = rownames(invert_2_siteSpecies), pattern = "-") , ])>0)
# Cocoa fields
invert_2_cocoaSiteSpecies <- siteSpecies(invert_2_cocoaOnly)
invert_20_cocoaSiteSpecies <- siteSpecies(invert_20_cocoaOnly)
# Pastures
invert_2_pastureSiteSpecies <- siteSpecies(invert_2_pastureOnly)
invert_20_pastureSiteSpecies <- siteSpecies(invert_20_pastureOnly)
# Vertebrates
riazData_2_siteSpecies <- siteSpecies(riazData_2_ReadsOnly)
riazData_20_siteSpecies <- siteSpecies(riazData_20_ReadsOnly)
riazData_2_cocoaSiteSpecies <- siteSpecies(riazData_2_cocoaOnly)
riazData_20_cocoaSiteSpecies <- siteSpecies(riazData_20_cocoaOnly)
riazData_2_pastureSiteSpecies <- siteSpecies(riazData_2_pastureOnly)
riazData_20_pastureSiteSpecies <- siteSpecies(riazData_20_pastureOnly)
length(unique(riazData_2_ReadsOnly$id[rowSums(riazData_2_ReadsOnly[-1])>0]))
## ----- MISC ----------------------------
# field plot groups.
cocoaField <- (siteLookup$site[siteLookup$system == "COCOA"])
pastureField <- (siteLookup$site[siteLookup$system == "PASTURE"])
forestField <- (siteLookup$site[siteLookup$system == "FOREST"])
# allSiteSpecies$landUse <- ifelse(grepl("G[0-9][0-9]",rownames(allSiteSpecies)),
# yes = "Cocoa",
# no = ifelse(grepl("P[0-9][0-9]", rownames(allSiteSpecies)),
# yes = "Pasture",
# no = "Forest"))
#
## Import site level data.
#
# library(raster)
#
# # Need lat and long for species distribution models.
# sampledPlots <- shapefile("PilotFarmData/sampledPlots.shp", verbose = T)
#
# plotNames <- unique(sampledPlots$ID)
#
# sampledPlotsTable <- tibble(plotName = sampledPlots$ID,
# xCentroid = sampledPlots$xCentroid,
# yCentroid = sampledPlots$yCentroid)
#
# detach("package:raster")
## few metrics for quality checks
invertData %>% select(SFX10_2:SFX9_20) %>% colSums()
invertData %>% select(SFX10_2:SFX9_20) %>% sum()
invertData_2 %>% select(`SFX237-04P-03`:`SFX237-04P-02`) %>% sum()
riazData %>% select(SFX10_2g:SFX9_20g) %>% colSums()
riazData %>% select(SFX10_2g:SFX9_20g) %>% sum()
riazData_2 %>% select(`SFX237-04P-03`:`SFX237-04P-02`) %>% sum()
## END