-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathWeightPolicy.py
161 lines (136 loc) · 6.72 KB
/
WeightPolicy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import isaacgym
import os
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
os.sys.path.insert(0, parentdir)
import torch
import time
import numpy as np
from omegaconf import OmegaConf
from hydra import compose, initialize
from hydra.utils import to_absolute_path
from MPC_Controller.Parameters import Parameters
from MPC_Controller.utils import DTYPE
from MPC_Controller.common.StateEstimator import StateEstimate
from RL_Environment.utils.utils import set_seed
from RL_Environment.utils.rsl_rl_utils import update_cfg_from_args, class_to_dict, get_load_path
from RL_Environment.tasks.legged_config_ppo import LeggedCfgPPO
from rsl_rl.modules import ActorCritic
## OmegaConf & Hydra Config
OmegaConf.register_new_resolver('eq', lambda x, y: x.lower()==y.lower())
OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower())
OmegaConf.register_new_resolver('if', lambda pred, a, b: a if pred else b)
OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg=='' else arg)
ROOT_DIR = os.path.dirname(os.path.realpath(__file__)) # Under <RL_Environment>
class WeightPolicy:
def __init__(self,
task="Aliengo",
checkpoint="runs/Aliengo/nn/Aliengo.pth",
num_envs=1):
self.num_actions = 12
self.num_obs = 48
self.device = "cuda"
self.is_determenistic = True
self.clip_actions = True
# hydra global initialization
initialize(config_path="./cfg")
cfg = compose(config_name="config",
overrides=["checkpoint="+checkpoint,
"task="+task,
"num_envs="+str(num_envs)])
self.lin_vel_scale = cfg["task"]["env"]["learn"]["linearVelocityScale"]
self.ang_vel_scale = cfg["task"]["env"]["learn"]["angularVelocityScale"]
self.dof_pos_scale = cfg["task"]["env"]["learn"]["dofPositionScale"]
self.dof_vel_scale = cfg["task"]["env"]["learn"]["dofVelocityScale"]
# cfg_dict = omegaconf_to_dict(cfg)
# print_dict(cfg_dict)
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = to_absolute_path(cfg.checkpoint)
train_cfg = LeggedCfgPPO()
train_cfg = update_cfg_from_args(train_cfg, cfg)
train_cfg_dict = class_to_dict(train_cfg)
policy_cfg = train_cfg_dict["policy"]
self.actor_critic = ActorCritic(self.num_obs,
self.num_obs,
self.num_actions,
**policy_cfg).to(self.device)
# load checkpoint
try:
print(f"Loading model from: {cfg.checkpoint}")
loaded_dict = torch.load(checkpoint)
self.actor_critic.load_state_dict(loaded_dict['model_state_dict'])
except:
print("Failed...")
log_root = os.path.join(ROOT_DIR, 'runs', cfg.task_name)
fallback_path = get_load_path(log_root)
print(f"Loading model from the latest run: {fallback_path}")
loaded_dict = torch.load(fallback_path)
self.actor_critic.load_state_dict(loaded_dict['model_state_dict'])
self.actor_critic.eval()
self.actor_critic.to(self.device)
self.policy = self.actor_critic.act_inference
self.num_agents = 1
self.obs = torch.ones([self.num_agents, self.num_obs],
requires_grad=False, dtype=torch.float, device=self.device)
def step(self):
obs = self._preproc_obs(self.obs)
# get action
t_start = time.time()
with torch.no_grad():
current_action = self.policy(obs.detach())
if Parameters.policy_print_time:
print("Model Inference Time: {:.5f}".format(time.time()-t_start))
# clip actions to (-1, 1)
if self.clip_actions:
current_action = self._rescale_actions(
-torch.ones_like(current_action, requires_grad=False, device=self.device),
torch.ones_like(current_action, requires_grad=False, device=self.device),
torch.clamp(current_action, -1.0, 1.0))
# * [-1, 1] -> [a, b] => [-1, 1] * (b-a)/2 + (b+a)/2
actions_rescale = torch.mul(current_action,
torch.tensor(
Parameters.MPC_param_scale,
dtype=torch.float,
device=self.device)).add(
torch.tensor(
Parameters.MPC_param_const,
dtype=torch.float,
device=self.device))
# weights = torch.nn.functional.pad(actions_rescale, (0, 1),mode="constant", value=0)
return actions_rescale.detach().cpu().numpy()[0] # shape (12,)
def compute_observations(self, dof_states, se_result:StateEstimate, _commands, _actions):
base_lin_vel = se_result.vBody.flatten() * self.lin_vel_scale
base_ang_vel = se_result.omegaBody.flatten() * self.ang_vel_scale
# TODO check gravity direction
projected_gravity = - se_result.ground_normal_yaw
commands = _commands * np.array([self.lin_vel_scale,
self.lin_vel_scale,
self.ang_vel_scale],
dtype=DTYPE)
dof_pos = dof_states["pos"] * self.dof_pos_scale
dof_vel = dof_states["vel"] * self.dof_vel_scale
observations = np.concatenate((base_lin_vel,
base_ang_vel,
projected_gravity,
commands,
dof_pos,
dof_vel,
_actions))
obs_pad = np.expand_dims(observations, axis=0)
self.obs = torch.from_numpy(obs_pad.astype(np.float32)).to(self.device)
def _preproc_obs(self, obs_batch):
if type(obs_batch) is dict:
for k, v in obs_batch.items():
obs_batch[k] = self._preproc_obs(v)
else:
if obs_batch.dtype == torch.uint8:
obs_batch = obs_batch.float() / 255.0
return obs_batch
def _rescale_actions(self, low, high, action):
d = (high - low) / 2.0
m = (high + low) / 2.0
scaled_action = action * d + m
return scaled_action