-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtrain.py
93 lines (71 loc) · 3.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import isaacgym
from datetime import datetime
from rsl_rl.runners import OnPolicyRunner
from MPC_Controller.Parameters import Parameters
import os
import hydra
from omegaconf import DictConfig, OmegaConf
from hydra.utils import to_absolute_path
from utils.reformat import omegaconf_to_dict, print_dict
from utils.utils import set_np_formatting, set_seed
from utils.rsl_rl_utils import update_cfg_from_args, class_to_dict, get_load_path
from tasks import isaacgym_task_map
ROOT_DIR = os.path.dirname(os.path.realpath(__file__)) # Under <RL_Environment>
## OmegaConf & Hydra Config
# Resolvers used in hydra configs
OmegaConf.register_new_resolver('eq', lambda x, y: x.lower()==y.lower())
OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower())
OmegaConf.register_new_resolver('if', lambda pred, a, b: a if pred else b)
# allows us to resolve default arguments which are copied in multiple places in the config.
# used primarily for num_ensv
OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg=='' else arg)
@hydra.main(config_name="config", config_path="./cfg")
def launch_hydra(cfg: DictConfig):
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = to_absolute_path(cfg.checkpoint)
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
# set numpy formatting for printing only
set_np_formatting()
# sets seed. if seed is -1 will pick a random one
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
# create native task and pass custom config
env = isaacgym_task_map[cfg.task_name](
cfg=omegaconf_to_dict(cfg.task),
sim_device=cfg.sim_device,
graphics_device_id=cfg.graphics_device_id,
headless=cfg.headless
)
train_cfg = isaacgym_task_map["ConfigPPO"]
train_cfg = update_cfg_from_args(train_cfg, cfg)
log_root = os.path.join(ROOT_DIR, 'runs', cfg.task_name)
log_dir = os.path.join(log_root, datetime.now().strftime('%b%d_%H-%M-%S'))
train_cfg_dict = class_to_dict(train_cfg)
ppo_runner = OnPolicyRunner(env, train_cfg_dict, log_dir, cfg.rl_device)
if cfg.test or cfg.checkpoint:
# load previously trained model
try:
print(f"Loading model from: {cfg.checkpoint}")
ppo_runner.load(cfg.checkpoint)
except:
print("Failed...")
resume_path = get_load_path(log_root)
print(f"Loading model from the latest run: {resume_path}")
ppo_runner.load(resume_path)
# dump config dict
experiment_dir = log_dir
os.makedirs(experiment_dir, exist_ok=True)
with open(os.path.join(experiment_dir, 'config.yaml'), 'w') as f:
f.write(OmegaConf.to_yaml(cfg))
if not cfg.test:
ppo_runner.learn(num_learning_iterations=train_cfg.runner.max_iterations, init_at_random_ep_len=False)
else:
policy = ppo_runner.get_inference_policy(device=env.device)
obs = env.get_observations()
for i in range(10*int(env.max_episode_length)):
actions = policy(obs.detach())
obs, _, rews, dones, infos = env.step(actions.detach())
if __name__ == '__main__':
Parameters.bridge_MPC_to_RL = True
launch_hydra()