-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_trainer.py
167 lines (139 loc) · 5.44 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from ovf_reduced import OVF
from Simulation import FieldSweep
import os
import re
import math
import numpy as np
from numpy import genfromtxt
import pickle
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from keras import models
from keras import layers
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.utils import to_categorical
from timeit import default_timer as timer
DATA_TLD = '/users/PAS1495/simba/simba'
DATA_DIR_ID = '.out'
TEST_TRAIN_SPLIT = 0.2
#Benchmark how long loading the data takes
timer_start = timer()
#Create a list in which to link the spatial data with the cuts
RAWDATA = []
#Instantiate the scaler since these spatial matrices are values on the order of 1e-5 to 1e-8
scl = MinMaxScaler()
for subdir, dirs, files in os.walk(DATA_TLD):
#Walk through each *.DATA_DIR_ID folder in the DATA_TLD directory
if DATA_DIR_ID in subdir and DATA_DIR_ID+'/' not in subdir:
print("------------------------------------------------------------")
print("Now walking through", subdir)
#
#Need the cut position in order to create a labels array
cut_pos = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)", subdir)
if(cut_pos):
cut_pos = float(cut_pos[0]) #Make sure the scientific notation becomes a float
else:
cut_pos = float(-1.0) #If no cut number is found then there is no cut
#
#Need a list of all the mf.csv files in the subdir
Mf_FILES = []
for i in range(len(files)):
if '.csv' in files[i] and 'mf' in files[i]:
Mf_FILES.append(files[i])
#/for
#
#File index probably is not 0, so find out what it is
file_index = Mf_FILES[0].split("-")[0]
#
#Loop through all of the mf.ovf files and process them into magnitudes, which becomes the training data
for i in range(len(Mf_FILES)):
i_offset = i+int(file_index) #Handle the file index offset
print("\nProcessing", Mf_FILES[i])
#Load magnetization data from the mf.csv file
mf_csv = genfromtxt(subdir+'/'+Mf_FILES[i], delimiter=',')
#Scale the spatial data before adding it to the master list
mf_csv = scl.fit_transform(mf_csv[:,:])
#Add the spatial grid (inputs) and link it with the cut position (labels)
RAWDATA.append([mf_csv, cut_pos])
#/for
#/if
#/for
#Convert into a Numpy array of shape (n, mx, my)
RAWDATA = np.asarray(RAWDATA)
#Shuffle the master RAWDATA so that training data will be randomized
np.random.shuffle(RAWDATA)
#Master data object starts out as a list structured as <n:{[mx, my]}>
# n: Range of 0 to total # of resonance datasets
# mx: 1024 cells wide
# my: 1024 cells long
DATASET = []
LABELSET = []
for chunk in RAWDATA:
DATASET.append(chunk[0])
LABELSET.append(chunk[1])
DATASET = np.asarray(DATASET)
LABELSET = np.asarray(LABELSET)
#Split DATASET into training and testing data, and encode the labels
split_index = len(DATASET) - int(TEST_TRAIN_SPLIT*len(DATASET))
train_grids = DATASET[:split_index,:]
train_labels = LABELSET[:split_index]
test_grids = DATASET[split_index:len(DATASET),:]
test_labels = LABELSET[split_index:len(DATASET)]
#Labelencode the cut positions, and then one-hot encode that result
le = LabelEncoder()
LABELSET_cat = le.fit_transform(LABELSET)
LABELSET_ohe = to_categorical(LABELSET_cat)
train_labels_ohe = LABELSET_ohe[:split_index]
test_labels_ohe = LABELSET_ohe[split_index:len(DATASET)]
#Make sure the shape of the input is correct (the last ",1" is the number of "channels"=1 for grayscale)
train_grids = train_grids.reshape((train_grids.shape[0], 1024, 1024, 1))
test_grids = test_grids.reshape((test_grids.shape[0], 1024, 1024, 1))
#Print the benchmark
timer_end = timer() - timer_start
print("\nTime to run:", str(timer_end/60.0), "mins")
#Network parameters
input_shape = (1024, 1024, 1)
output_size = len(train_labels_ohe[0])
activation = 'relu'
optimizer = 'rmsprop'
#Create the encoder
NETWORK = models.Sequential()
#Layer 1
NETWORK.add(layers.Conv2D(128, (5,5), activation=activation, input_shape=input_shape))
#Pool
NETWORK.add(layers.MaxPooling2D((2,2)))
#Layer 2
NETWORK.add(layers.Conv2D(64, (6,6), activation=activation))
#Pool
NETWORK.add(layers.MaxPooling2D((2,2)))
#Layer 3
NETWORK.add(layers.Conv2D(32, (5,5), activation=activation))
#Pool
NETWORK.add(layers.MaxPooling2D((2,2)))
#Connect to a dense output layer - just like an FCN
NETWORK.add(layers.Flatten())
NETWORK.add(layers.Dense(16, activation=activation))
NETWORK.add(layers.Dense(output_size, activation='softmax'))
#Compile
NETWORK.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
#Save weights
#NETWORK.save_weights('model_weights.h5')
#Print summary
print(NETWORK.summary())
#Fitting parameters
patience = 10
max_epochs = 50
batch_size = 8
#Set callbacks
callbacks = [EarlyStopping(monitor='val_loss', patience=patience),
ModelCheckpoint(filepath='model_best.h5', monitor='val_loss', save_best_only=True)]
#Fit
history = NETWORK.fit(train_grids, train_labels_ohe,
epochs=max_epochs,
batch_size=batch_size,
callbacks=callbacks,
validation_data=(test_grids, test_labels_ohe)
)
#Save the history
pickle.dump(history.history, open('model_history.pkl', 'wb'))