forked from meshonline/kinect-openni-bvh-saver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkinectbvh.h
834 lines (742 loc) · 33.5 KB
/
kinectbvh.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#ifndef KINECTBVH_H
#define KINECTBVH_H
// BVH use centimeter by default, we scale to meter to match the default unit of Blender.
#define SCALE 0.01f
// 30 FPS
#define FPS 0.033333
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
#include "vec_math.h"
#include "catmull_rom.h"
using namespace std;
using namespace Vec_Math;
// Joint type.
typedef enum {
JOINT_HEAD,
JOINT_NECK,
JOINT_LEFT_SHOULDER,
JOINT_RIGHT_SHOULDER,
JOINT_LEFT_ELBOW,
JOINT_RIGHT_ELBOW,
JOINT_LEFT_HAND,
JOINT_RIGHT_HAND,
JOINT_TORSO,
JOINT_LEFT_HIP,
JOINT_RIGHT_HIP,
JOINT_LEFT_KNEE,
JOINT_RIGHT_KNEE,
JOINT_LEFT_FOOT,
JOINT_RIGHT_FOOT,
JOINT_SIZE
} JointType;
// Joint.
typedef struct Joint {
Joint() : tracked(false) {}
Quaternion quat;
Vec3 pos;
bool tracked;
} Joint;
// The most important class.
class KinectBVH {
public:
// Constructor.
KinectBVH() {
// Generate parent joint map.
parent_joint_map[JOINT_TORSO] = JOINT_TORSO;
parent_joint_map[JOINT_NECK] = JOINT_TORSO;
parent_joint_map[JOINT_HEAD] = JOINT_NECK;
parent_joint_map[JOINT_LEFT_SHOULDER] = JOINT_NECK;
parent_joint_map[JOINT_LEFT_ELBOW] = JOINT_LEFT_SHOULDER;
parent_joint_map[JOINT_LEFT_HAND] = JOINT_LEFT_ELBOW;
parent_joint_map[JOINT_RIGHT_SHOULDER] = JOINT_NECK;
parent_joint_map[JOINT_RIGHT_ELBOW] = JOINT_RIGHT_SHOULDER;
parent_joint_map[JOINT_RIGHT_HAND] = JOINT_RIGHT_ELBOW;
parent_joint_map[JOINT_LEFT_HIP] = JOINT_TORSO;
parent_joint_map[JOINT_LEFT_KNEE] = JOINT_LEFT_HIP;
parent_joint_map[JOINT_LEFT_FOOT] = JOINT_LEFT_KNEE;
parent_joint_map[JOINT_RIGHT_HIP] = JOINT_TORSO;
parent_joint_map[JOINT_RIGHT_KNEE] = JOINT_RIGHT_HIP;
parent_joint_map[JOINT_RIGHT_FOOT] = JOINT_RIGHT_KNEE;
}
// Destructor.
~KinectBVH() {
}
// Initial and generate 'T' pose skeleton.
void CalibrateSkeleton() {
// Clean data.
m_nbFrame = 0;
m_aOffsets.clear();
m_vJointsOrientation.clear();
// Hard code the 'T' pose skeleton.
Vec3 offsets[JOINT_SIZE];
Vec3 offset;
offset.x = 0.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_TORSO] = offset;
offset.x = 0.0f;
offset.y = 43.63f;
offset.z = 0.0f;
offsets[JOINT_NECK] = offset;
offset.x = 0.0f;
offset.y = 18.49f;
offset.z = 0.0f;
offsets[JOINT_HEAD] = offset;
offset.x = -14.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_LEFT_SHOULDER] = offset;
offset.x = -25.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_LEFT_ELBOW] = offset;
offset.x = -23.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_LEFT_HAND] = offset;
offset.x = 14.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_RIGHT_SHOULDER] = offset;
offset.x = 25.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_RIGHT_ELBOW] = offset;
offset.x = 23.0f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_RIGHT_HAND] = offset;
offset.x = -9.52f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_LEFT_HIP] = offset;
offset.x = 0.0f;
offset.y = -37.32f;
offset.z = 0.0f;
offsets[JOINT_LEFT_KNEE] = offset;
offset.x = 0.0f;
offset.y = -34.6f;
offset.z = 0.0f;
offsets[JOINT_LEFT_FOOT] = offset;
offset.x = 9.52f;
offset.y = 0.0f;
offset.z = 0.0f;
offsets[JOINT_RIGHT_HIP] = offset;
offset.x = 0.0f;
offset.y = -37.32f;
offset.z = 0.0f;
offsets[JOINT_RIGHT_KNEE] = offset;
offset.x = 0.0f;
offset.y = -34.6f;
offset.z = 0.0f;
offsets[JOINT_RIGHT_FOOT] = offset;
// Add joints offset data.
for (int i = 0; i < JOINT_SIZE; i++) {
AddOffset(offsets[i]);
}
}
// Add the positions of all joints.
void AddAllJointsPosition(const Joint* joints) {
for (int i = 0; i < JOINT_SIZE; i++) {
m_vJointsOrientation.push_back(joints[i]);
}
}
// Add the frame counter.
void IncrementNbFrames() { ++m_nbFrame; }
// Create the file, batch generate motion capture data, save to file, close the file.
void SaveToBVHFile(const string& filename) {
m_pFile.open(filename.c_str());
if (m_pFile.is_open()) {
FilterPositions();
CorrectAngle(tilt_angle);
CreateQuaternionInformation();
CreateSkeletonInformation();
CreateMotionInformation();
m_pFile.close();
}
}
// Set kinect tilt angle
void SetTiltAngle(const float& angle) {
tilt_angle = angle;
}
private:
float tilt_angle;
// Frame counter.
int m_nbFrame;
// The relative offset to it parent.
vector<Vec3> m_aOffsets;
// The positions and rotations of every frame.
vector<Joint> m_vJointsOrientation;
// Output file.
ofstream m_pFile;
// Parent joint map.
JointType parent_joint_map[JOINT_SIZE];
// Add the relative offset to it parent.
void AddOffset(const Vec3& offset) {
Vec3 one_offset;
one_offset.x = offset.x * SCALE;
one_offset.y = offset.y * SCALE;
one_offset.z = offset.z * SCALE;
m_aOffsets.push_back(one_offset);
}
// Write the motion capture data of a joint.
void WriteJoint(stringstream& flux, const Joint* joints, const int idx) {
Vec3 angles = GetEulers(joints, idx);
flux << angles.z * kRadToDeg << " " << angles.y * kRadToDeg << " "
<< angles.x * kRadToDeg << " ";
}
// Calculate the Euler angle of joint's relative rotation to its parent.
Vec3 GetEulers(const Joint* joints, const int idx) {
// Get the quaternion of its parent.
Quaternion q_parent;
if (idx == JOINT_TORSO) {
q_parent = quat_identity;
} else {
q_parent = vec4_create(joints[parent_joint_map[idx]].quat.x,
joints[parent_joint_map[idx]].quat.y,
joints[parent_joint_map[idx]].quat.z,
joints[parent_joint_map[idx]].quat.w);
}
// Get the quaternion of the joint.
Quaternion q_current = vec4_create(joints[idx].quat.x, joints[idx].quat.y,
joints[idx].quat.z, joints[idx].quat.w);
// Calculate the relative quaternion.
Quaternion q_delta = quat_left_multiply(q_current, quat_inverse(q_parent));
// Convert to Euler angle, roll->yaw->pitch order, which roll is outer, pitch is inner.
Vec3 angle = euler_from_quat(q_delta);
return angle;
}
// Generate 'T' pose skeleton and save to file.
void CreateSkeletonInformation() {
stringstream flux;
// ROOT
flux << "HIERARCHY" << endl;
flux << "ROOT Hip" << endl;
flux << "{" << endl;
// Spine
flux << "\tOFFSET " << m_aOffsets[JOINT_TORSO].x << " "
<< m_aOffsets[JOINT_TORSO].y << " " << m_aOffsets[JOINT_TORSO].z
<< endl;
flux << "\tCHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation "
"Xrotation"
<< endl;
flux << "\tJOINT ShoulderCenter" << endl;
flux << "\t{" << endl;
// Head
flux << "\t\tOFFSET " << m_aOffsets[JOINT_NECK].x << " "
<< m_aOffsets[JOINT_NECK].y << " " << m_aOffsets[JOINT_NECK].z << endl;
flux << "\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\tJOINT Head" << endl;
flux << "\t\t{" << endl;
// End Site
flux << "\t\t\tOFFSET " << m_aOffsets[JOINT_HEAD].x << " "
<< m_aOffsets[JOINT_HEAD].y << " " << m_aOffsets[JOINT_HEAD].z << endl;
flux << "\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\tEnd Site" << endl;
flux << "\t\t\t{" << endl;
flux << "\t\t\t\tOFFSET 0.0 " << 8.91f * SCALE << " 0.0" << endl;
flux << "\t\t\t}" << endl;
flux << "\t\t}" << endl;
// Shoulder Left
flux << "\t\tJOINT ShoulderLeft" << endl;
flux << "\t\t{" << endl;
// Elbow Left
flux << "\t\t\tOFFSET " << m_aOffsets[JOINT_LEFT_SHOULDER].x << " "
<< m_aOffsets[JOINT_LEFT_SHOULDER].y << " "
<< m_aOffsets[JOINT_LEFT_SHOULDER].z << endl;
flux << "\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\tJOINT ElbowLeft" << endl;
flux << "\t\t\t{" << endl;
// Wrist Left
flux << "\t\t\t\tOFFSET " << m_aOffsets[JOINT_LEFT_ELBOW].x << " "
<< m_aOffsets[JOINT_LEFT_ELBOW].y << " "
<< m_aOffsets[JOINT_LEFT_ELBOW].z << endl;
flux << "\t\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\t\tJOINT WristLeft" << endl;
flux << "\t\t\t\t{" << endl;
// Hand Left
flux << "\t\t\t\t\tOFFSET " << m_aOffsets[JOINT_LEFT_HAND].x << " "
<< m_aOffsets[JOINT_LEFT_HAND].y << " "
<< m_aOffsets[JOINT_LEFT_HAND].z << endl;
flux << "\t\t\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\t\t\tEnd Site" << endl;
flux << "\t\t\t\t\t{" << endl;
flux << "\t\t\t\t\t\tOFFSET " << -8.32f * SCALE << " 0.0 0.0" << endl;
flux << "\t\t\t\t\t}" << endl;
flux << "\t\t\t\t}" << endl;
flux << "\t\t\t}" << endl;
flux << "\t\t}" << endl;
// Shoulder Right
flux << "\t\tJOINT ShoulderRight" << endl;
flux << "\t\t{" << endl;
// Elbow Right
flux << "\t\t\tOFFSET " << m_aOffsets[JOINT_RIGHT_SHOULDER].x << " "
<< m_aOffsets[JOINT_RIGHT_SHOULDER].y << " "
<< m_aOffsets[JOINT_RIGHT_SHOULDER].z << endl;
flux << "\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\tJOINT ElbowRight" << endl;
flux << "\t\t\t{" << endl;
// Wrist Right
flux << "\t\t\t\tOFFSET " << m_aOffsets[JOINT_RIGHT_ELBOW].x << " "
<< m_aOffsets[JOINT_RIGHT_ELBOW].y << " "
<< m_aOffsets[JOINT_RIGHT_ELBOW].z << endl;
flux << "\t\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\t\tJOINT WristRight" << endl;
flux << "\t\t\t\t{" << endl;
// Hand Right
flux << "\t\t\t\t\tOFFSET " << m_aOffsets[JOINT_RIGHT_HAND].x << " "
<< m_aOffsets[JOINT_RIGHT_HAND].y << " "
<< m_aOffsets[JOINT_RIGHT_HAND].z << endl;
flux << "\t\t\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\t\t\tEnd Site" << endl;
flux << "\t\t\t\t\t{" << endl;
flux << "\t\t\t\t\t\tOFFSET " << 8.32f * SCALE << " 0.0 0.0" << endl;
flux << "\t\t\t\t\t}" << endl;
flux << "\t\t\t\t}" << endl;
flux << "\t\t\t}" << endl;
flux << "\t\t}" << endl;
flux << "\t}" << endl;
// Hip Left
flux << "\tJOINT HipLeft" << endl;
flux << "\t{" << endl;
// Knee Left
flux << "\t\tOFFSET " << m_aOffsets[JOINT_LEFT_HIP].x << " "
<< m_aOffsets[JOINT_LEFT_HIP].y << " " << m_aOffsets[JOINT_LEFT_HIP].z
<< endl;
flux << "\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\tJOINT KneeLeft" << endl;
flux << "\t\t{" << endl;
// Ankle Left
flux << "\t\t\tOFFSET " << m_aOffsets[JOINT_LEFT_KNEE].x << " "
<< m_aOffsets[JOINT_LEFT_KNEE].y << " "
<< m_aOffsets[JOINT_LEFT_KNEE].z << endl;
flux << "\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\tJOINT AnkleLeft" << endl;
flux << "\t\t\t{" << endl;
// Foot Left
flux << "\t\t\t\tOFFSET " << m_aOffsets[JOINT_LEFT_FOOT].x << " "
<< m_aOffsets[JOINT_LEFT_FOOT].y << " "
<< m_aOffsets[JOINT_LEFT_FOOT].z << endl;
flux << "\t\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\t\tEnd Site" << endl;
flux << "\t\t\t\t{" << endl;
flux << "\t\t\t\t\tOFFSET 0.0 0.0 " << 8.91f * SCALE << endl;
flux << "\t\t\t\t}" << endl;
flux << "\t\t\t}" << endl;
flux << "\t\t}" << endl;
flux << "\t}" << endl;
// Hip Right
flux << "\tJOINT HipRight" << endl;
flux << "\t{" << endl;
// Knee Right
flux << "\t\tOFFSET " << m_aOffsets[JOINT_RIGHT_HIP].x << " "
<< m_aOffsets[JOINT_RIGHT_HIP].y << " "
<< m_aOffsets[JOINT_RIGHT_HIP].z << endl;
flux << "\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\tJOINT KneeRight" << endl;
flux << "\t\t{" << endl;
// Ankle Right
flux << "\t\t\tOFFSET " << m_aOffsets[JOINT_RIGHT_KNEE].x << " "
<< m_aOffsets[JOINT_RIGHT_KNEE].y << " "
<< m_aOffsets[JOINT_RIGHT_KNEE].z << endl;
flux << "\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\tJOINT AnkleRight" << endl;
flux << "\t\t\t{" << endl;
// Foot Right
flux << "\t\t\t\tOFFSET " << m_aOffsets[JOINT_RIGHT_FOOT].x << " "
<< m_aOffsets[JOINT_RIGHT_FOOT].y << " "
<< m_aOffsets[JOINT_RIGHT_FOOT].z << endl;
flux << "\t\t\t\tCHANNELS 3 Zrotation Yrotation Xrotation" << endl;
flux << "\t\t\t\tEnd Site" << endl;
flux << "\t\t\t\t{" << endl;
flux << "\t\t\t\t\tOFFSET 0.0 0.0 " << 8.91f * SCALE << endl;
flux << "\t\t\t\t}" << endl;
flux << "\t\t\t}" << endl;
flux << "\t\t}" << endl;
flux << "\t}" << endl;
flux << "}" << endl;
m_pFile << flux.str();
}
// Generate motion capture data and save to file.
void CreateMotionInformation() {
stringstream flux;
flux << "MOTION" << endl;
flux << "Frames: " << m_nbFrame << endl;
flux << "Frame Time: " << FPS << endl;
for (int i = 0; i < static_cast<int>(m_vJointsOrientation.size() / JOINT_SIZE); i++) {
// The position of the root joint in centimeter, as the unit in Freenect is millimeter, we multiple it 0.1.
Joint* joints = &m_vJointsOrientation[i * JOINT_SIZE];
flux << joints[JOINT_TORSO].pos.x * SCALE * 0.1f << " " << joints[JOINT_TORSO].pos.y * SCALE * 0.1f << " "
<< joints[JOINT_TORSO].pos.z * SCALE * 0.1f << " ";
// Write the Euler angle of every joint(ZYX).
WriteJoint(flux, joints, JOINT_TORSO);
WriteJoint(flux, joints, JOINT_NECK);
WriteJoint(flux, joints, JOINT_HEAD);
WriteJoint(flux, joints, JOINT_LEFT_SHOULDER);
WriteJoint(flux, joints, JOINT_LEFT_ELBOW);
WriteJoint(flux, joints, JOINT_LEFT_HAND);
WriteJoint(flux, joints, JOINT_RIGHT_SHOULDER);
WriteJoint(flux, joints, JOINT_RIGHT_ELBOW);
WriteJoint(flux, joints, JOINT_RIGHT_HAND);
WriteJoint(flux, joints, JOINT_LEFT_HIP);
WriteJoint(flux, joints, JOINT_LEFT_KNEE);
WriteJoint(flux, joints, JOINT_LEFT_FOOT);
WriteJoint(flux, joints, JOINT_RIGHT_HIP);
WriteJoint(flux, joints, JOINT_RIGHT_KNEE);
WriteJoint(flux, joints, JOINT_RIGHT_FOOT);
flux << endl;
}
m_pFile << flux.str();
}
// Correct the pitch angle of the camera.
void CorrectAngle(const float& kinect_angle) {
// Calculate the invert rotation matrix.
Mat3 correct_matrix = mat3_rotation_x(kinect_angle * kDegToRad);
// Rotate the position for every joint.
for (int i = 0; i < static_cast<int>(m_vJointsOrientation.size()); i++) {
m_vJointsOrientation[i].pos = mat3_mul_vector(m_vJointsOrientation[i].pos, correct_matrix);
}
}
// Generate quaternions for a set of joints.
void CreateQuaternionInformation() {
// If the arms are not standard 'T' pose, you may set an offset angle.
const float arm_angle = 0.0f;
const float arm_angle_scaler = (arm_angle + 90.0f) / 90.0f;
// we save last stable x axis for each joint to avoid trembling
Vec3 last_stable_vx[JOINT_SIZE];
for (int i = 0; i < JOINT_SIZE; i++) {
last_stable_vx[i] = vec3_zero;
}
// loop through all records
for (int i = 0; i < static_cast<int>(m_vJointsOrientation.size()/ JOINT_SIZE); i++) {
Joint* joints = &m_vJointsOrientation[i * JOINT_SIZE];
const float MAX_STABLE_DOT = 0.925f;
float dot;
Vec3 p1, p2;
Vec3 v1, v2;
Vec3 vx, vy, vz;
Vec3 v_body_x;
Mat3 m, mr;
Quaternion q;
// JOINT_TORSO
p1 = joints[JOINT_LEFT_HIP].pos;
p2 = joints[JOINT_RIGHT_HIP].pos;
vx = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_TORSO].pos;
p2 = joints[JOINT_NECK].pos;
vy = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
q = quat_from_mat3(m);
joints[JOINT_TORSO].quat = vec4_create(q.x, q.y, q.z, q.w);
// save body's axis x for later use
v_body_x = vx;
// JOINT_NECK
p1 = joints[JOINT_LEFT_SHOULDER].pos;
p2 = joints[JOINT_RIGHT_SHOULDER].pos;
vx = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_NECK].pos;
p2 = joints[JOINT_HEAD].pos;
vy = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
q = quat_from_mat3(m);
joints[JOINT_NECK].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_HEAD
joints[JOINT_HEAD].quat = joints[JOINT_NECK].quat;
// JOINT_LEFT_SHOULDER
p1 = joints[JOINT_LEFT_SHOULDER].pos;
p2 = joints[JOINT_LEFT_ELBOW].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_LEFT_ELBOW].pos;
p2 = joints[JOINT_LEFT_HAND].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
if (fabsf(dot) > MAX_STABLE_DOT) {
vx = last_stable_vx[JOINT_LEFT_SHOULDER];
} else {
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
last_stable_vx[JOINT_LEFT_SHOULDER] = vx;
}
vy = v1;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(kPiDiv2 * arm_angle_scaler));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_LEFT_SHOULDER].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_LEFT_ELBOW
p1 = joints[JOINT_LEFT_SHOULDER].pos;
p2 = joints[JOINT_LEFT_ELBOW].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_LEFT_ELBOW].pos;
p2 = joints[JOINT_LEFT_HAND].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
if (fabsf(dot) > MAX_STABLE_DOT) {
vx = last_stable_vx[JOINT_LEFT_ELBOW];
} else {
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
last_stable_vx[JOINT_LEFT_ELBOW] = vx;
}
vy = v2;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(kPiDiv2 * arm_angle_scaler));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_LEFT_ELBOW].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_LEFT_HAND
joints[JOINT_LEFT_HAND].quat = joints[JOINT_LEFT_ELBOW].quat;
// JOINT_RIGHT_SHOULDER
p1 = joints[JOINT_RIGHT_SHOULDER].pos;
p2 = joints[JOINT_RIGHT_ELBOW].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_RIGHT_ELBOW].pos;
p2 = joints[JOINT_RIGHT_HAND].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
if (fabsf(dot) > MAX_STABLE_DOT) {
vx = last_stable_vx[JOINT_RIGHT_SHOULDER];
} else {
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
last_stable_vx[JOINT_RIGHT_SHOULDER] = vx;
}
vy = v1;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(-kPiDiv2 * arm_angle_scaler));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_RIGHT_SHOULDER].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_RIGHT_ELBOW
p1 = joints[JOINT_RIGHT_SHOULDER].pos;
p2 = joints[JOINT_RIGHT_ELBOW].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_RIGHT_ELBOW].pos;
p2 = joints[JOINT_RIGHT_HAND].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
if (fabsf(dot) > MAX_STABLE_DOT) {
vx = last_stable_vx[JOINT_RIGHT_ELBOW];
} else {
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
last_stable_vx[JOINT_RIGHT_ELBOW] = vx;
}
vy = v2;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(-kPiDiv2 * arm_angle_scaler));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_RIGHT_ELBOW].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_RIGHT_HAND
joints[JOINT_RIGHT_HAND].quat = joints[JOINT_RIGHT_ELBOW].quat;
// JOINT_LEFT_HIP
p1 = joints[JOINT_LEFT_HIP].pos;
p2 = joints[JOINT_LEFT_KNEE].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_LEFT_KNEE].pos;
p2 = joints[JOINT_LEFT_FOOT].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
// constrain to body's axis x
vx = vec3_add(vec3_mul_scalar(vec3_normalize(v_body_x), dot),
vec3_mul_scalar(vec3_normalize(vx), 1 - dot));
// reverse the direction because knees can only bend to back
vx = vec3_negate(vx);
vy = v1;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(kPi));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_LEFT_HIP].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_LEFT_KNEE
p1 = joints[JOINT_LEFT_HIP].pos;
p2 = joints[JOINT_LEFT_KNEE].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_LEFT_KNEE].pos;
p2 = joints[JOINT_LEFT_FOOT].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
// constrain to body's axis x
vx = vec3_add(vec3_mul_scalar(vec3_normalize(v_body_x), dot),
vec3_mul_scalar(vec3_normalize(vx), 1 - dot));
// reverse the direction because knees can only bend to back
vx = vec3_negate(vx);
vy = v2;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(kPi));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_LEFT_KNEE].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_LEFT_FOOT
joints[JOINT_LEFT_FOOT].quat = joints[JOINT_LEFT_KNEE].quat;
// JOINT_RIGHT_HIP
p1 = joints[JOINT_RIGHT_HIP].pos;
p2 = joints[JOINT_RIGHT_KNEE].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_RIGHT_KNEE].pos;
p2 = joints[JOINT_RIGHT_FOOT].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
// constrain to body's axis x
vx = vec3_add(vec3_mul_scalar(vec3_normalize(v_body_x), dot),
vec3_mul_scalar(vec3_normalize(vx), 1 - dot));
// reverse the direction because knees can only bend to back
vx = vec3_negate(vx);
vy = v1;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(kPi));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_RIGHT_HIP].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_RIGHT_KNEE
p1 = joints[JOINT_RIGHT_HIP].pos;
p2 = joints[JOINT_RIGHT_KNEE].pos;
v1 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
p1 = joints[JOINT_RIGHT_KNEE].pos;
p2 = joints[JOINT_RIGHT_FOOT].pos;
v2 = vec3_create(p2.x - p1.x, p2.y - p1.y, p2.z - p1.z);
dot = vec3_dot(vec3_normalize(v1), vec3_normalize(v2));
vx = vec3_cross(vec3_normalize(v1), vec3_normalize(v2));
// constrain to body's axis x
vx = vec3_add(vec3_mul_scalar(vec3_normalize(v_body_x), dot),
vec3_mul_scalar(vec3_normalize(vx), 1 - dot));
// reverse the direction because knees can only bend to back
vx = vec3_negate(vx);
vy = v2;
vz = vec3_zero;
m = mat3_from_axis(vx, vy, vz);
// inverse bind pose
mr = mat3_inverse(mat3_rotation_z(kPi));
m = mat3_multiply(mr, m);
q = quat_from_mat3(m);
joints[JOINT_RIGHT_KNEE].quat = vec4_create(q.x, q.y, q.z, q.w);
// JOINT_RIGHT_FOOT
joints[JOINT_RIGHT_FOOT].quat = joints[JOINT_RIGHT_KNEE].quat;
}
}
// Recover lost positions, apply median filter.
void FilterPositions() {
// slerp positions lack in confidence
int last_tracked_indices[JOINT_SIZE];
bool last_tracked_status[JOINT_SIZE];
// init all tracked indices to invalid value
for (int j = 0; j < JOINT_SIZE; j++) {
last_tracked_indices[j] = -1;
last_tracked_status[j] = false;
}
for (int i = 0; i < static_cast<int>(m_vJointsOrientation.size() / JOINT_SIZE); i++) {
Joint* joints = &m_vJointsOrientation[i * JOINT_SIZE];
for (int j = 0; j < JOINT_SIZE; j++) {
int index = i * JOINT_SIZE + j;
// when lost tracking (--|__)
if (last_tracked_status[j] != false && joints[j].tracked == false) {
last_tracked_status[j] = false;
}
// when restore tracking (__|--)
if (last_tracked_indices[j] >= 0 && last_tracked_status[j] == false &&
joints[j].tracked != false) {
// lerp lost positions
int last_tracked_index = last_tracked_indices[j];
int current_tracked_index = index;
// start point and end point
Vec3 p1 = m_vJointsOrientation[last_tracked_index].pos;
Vec3 p2 = m_vJointsOrientation[current_tracked_index].pos;
// test if we can use better catmull-rom algorithm, otherwise we use stable linear algorithm.
int cat_head_index = last_tracked_index - JOINT_SIZE * 2;
int cat_tail_index = current_tracked_index + JOINT_SIZE * 2;
bool catmull_rom = (cat_head_index >= 0 &&
m_vJointsOrientation[cat_head_index].tracked &&
cat_tail_index < static_cast<int>(m_vJointsOrientation.size()) &&
m_vJointsOrientation[cat_tail_index].tracked);
if (catmull_rom) {
Vec3 p0 = m_vJointsOrientation[cat_head_index].pos;
Vec3 p3 = m_vJointsOrientation[cat_tail_index].pos;
CubicPoly px, py, pz;
InitCentripetalCR(p0, p1, p2, p3,
2.0f, (float)(current_tracked_index - last_tracked_index) / JOINT_SIZE, 2.0f,
px, py, pz);
for (int k = last_tracked_index + JOINT_SIZE; k < current_tracked_index; k += JOINT_SIZE) {
float t = (float)(k - last_tracked_index) / (current_tracked_index - last_tracked_index);
m_vJointsOrientation[k].pos.x = px.eval(t);
m_vJointsOrientation[k].pos.y = py.eval(t);
m_vJointsOrientation[k].pos.z = pz.eval(t);
}
} else {
for (int k = last_tracked_index + JOINT_SIZE; k < current_tracked_index; k += JOINT_SIZE) {
float t = (float)(k - last_tracked_index) / (current_tracked_index - last_tracked_index);
m_vJointsOrientation[k].pos.x = p1.x * (1.0f - t) + p2.x * t;
m_vJointsOrientation[k].pos.y = p1.y * (1.0f - t) + p2.y * t;
m_vJointsOrientation[k].pos.z = p1.z * (1.0f - t) + p2.z * t;
}
}
}
// when tracked, save track index and status
if (joints[j].tracked != false) {
last_tracked_indices[j] = index;
last_tracked_status[j] = joints[j].tracked;
}
}
}
// calculate median filter
const int filter_radius = 2;
int min_k = 0;
int max_k = static_cast<int>(m_vJointsOrientation.size() / JOINT_SIZE - 1) * JOINT_SIZE;
vector<float> temp_positions;
for (int i = 0; i < static_cast<int>(m_vJointsOrientation.size() / JOINT_SIZE); i++) {
for (int j = 0; j < JOINT_SIZE; j++) {
vector<float> px, py, pz;
int index = i * JOINT_SIZE + j;
for (int k = index - filter_radius * JOINT_SIZE;
k <= index + filter_radius * JOINT_SIZE; k += JOINT_SIZE) {
if (k - j < min_k) {
px.push_back(m_vJointsOrientation[min_k + j].pos.x);
py.push_back(m_vJointsOrientation[min_k + j].pos.y);
pz.push_back(m_vJointsOrientation[min_k + j].pos.z);
} else if (k - j > max_k) {
px.push_back(m_vJointsOrientation[max_k + j].pos.x);
py.push_back(m_vJointsOrientation[max_k + j].pos.y);
pz.push_back(m_vJointsOrientation[max_k + j].pos.z);
} else {
px.push_back(m_vJointsOrientation[k].pos.x);
py.push_back(m_vJointsOrientation[k].pos.y);
pz.push_back(m_vJointsOrientation[k].pos.z);
}
}
sort(px.begin(), px.end());
sort(py.begin(), py.end());
sort(pz.begin(), pz.end());
temp_positions.push_back(px[filter_radius]);
temp_positions.push_back(py[filter_radius]);
temp_positions.push_back(pz[filter_radius]);
}
}
// apply median filter
for (int i = 0; i < static_cast<int>(m_vJointsOrientation.size()); i++) {
float* positions = &temp_positions[i * 3];
m_vJointsOrientation[i].pos.x = positions[0];
m_vJointsOrientation[i].pos.y = positions[1];
m_vJointsOrientation[i].pos.z = positions[2];
}
}
};
#endif // KINECTBVH_H