-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
106 lines (81 loc) · 3.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import cv2
from bowutils import *
def generate_dictionary(imgs_data, dictionary_size):
# Extracting descriptors
desc = stack_array([img_data.descriptors for img_data in imgs_data])
# important, cv2.kmeans only accepts type32 descriptors
desc = np.float32(desc)
# Clustering
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 0.01)
flags = cv2.KMEANS_PP_CENTERS
# desc is a type32 numpy array of vstacked descriptors
compactness, labels, dictionary = cv2.kmeans(desc, dictionary_size, None, criteria, 1, flags)
np.save(params.DICT_PATH, dictionary)
return dictionary
def main():
dictionary_size = 512
# Loading images
"""imgs_data = [] # type: list[ImageData]
pos_imgs_path = "train/pos"
neg_imgs_path = "train/neg"
print("Loading images...")
# imreads returns a list of all images in that directory
pos_imgs = imreads(pos_imgs_path)
neg_imgs = imreads(neg_imgs_path)
img_count = 0
for img in pos_imgs:
img_data = ImageData(img)
img_data.set_class("pos")
imgs_data.insert(img_count, img_data)
img_count += 1
for img in neg_imgs:
img_data = ImageData(img)
img_data.set_class("neg")
imgs_data.insert(img_count, img_data)
img_count += 1"""
program_start = cv2.getTickCount()
print("Loading images...")
start = cv2.getTickCount()
paths = ["train/pos", "train/neg"]
class_names = ["pos", "neg"]
imgs_data = get_imgs_data(paths, class_names)
print("Loaded {} image(s)".format(len(imgs_data)))
print_duration(start)
print("Computing descriptors...")
start = cv2.getTickCount()
[img_data.compute_descriptors() for img_data in imgs_data]
print_duration(start)
print("Clustering...")
start = cv2.getTickCount()
dictionary = generate_dictionary(imgs_data, dictionary_size)
print_duration(start)
print("Generating histograms...")
start = cv2.getTickCount()
[img_data.generate_bow_hist(dictionary) for img_data in imgs_data]
print_duration(start)
print imgs_data[0].hog().shape
print imgs_data[0].features.shape
print("Training SVM...")
start = cv2.getTickCount()
# Begin training SVM
svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setKernel(cv2.ml.SVM_LINEAR)
svm.setC(2.67)
svm.setGamma(5.383)
# Compile samples
samples = get_samples(imgs_data)
responses = np.int32([img_data.response for img_data in imgs_data])
svm.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 1000, 1.e-06))
svm.train(samples, cv2.ml.ROW_SAMPLE, responses)
svm.save(params.SVM_PATH)
output = svm.predict(samples)[1].ravel()
error = (np.absolute(responses.ravel() - output).sum()) / float(output.shape[0])
if error < 0.2:
print "Successfully trained SVM with {}% error".format(error * 100)
else:
print "Failed to train SVM. {}% error".format(error * 100)
print_duration(start)
print("Finished training BOW detector. {}".format(format_time(get_elapsed_time(program_start))))
if __name__ == '__main__':
main()