diff --git a/examples/Automaton.hs b/examples/Automaton.hs index b8ce97d..44553cf 100644 --- a/examples/Automaton.hs +++ b/examples/Automaton.hs @@ -6,13 +6,13 @@ #-} module Automaton where -import Data.Functor.Cofree -import Data.Functor.Cofree.Internal -import Data.DeriveLiftedInstances +import Data.Functor.Cofree ( Cofree(..) ) +import Data.Functor.Cofree.Internal ( cofreeDeriv ) +import Data.DeriveLiftedInstances ( deriveInstance ) -import Control.Comonad -import Data.Functor.Identity -import Data.Functor.Compose +import Control.Comonad ( Comonad(extract) ) +import Data.Functor.Identity ( Identity ) +import Data.Functor.Compose ( Compose(..) ) class Action i s where diff --git a/examples/Laws.hs b/examples/Laws.hs new file mode 100644 index 0000000..11b1061 --- /dev/null +++ b/examples/Laws.hs @@ -0,0 +1,127 @@ +{-# LANGUAGE + TypeFamilies + , GADTs + , LambdaCase + , RankNTypes + , BlockArguments + , KindSignatures + , ScopedTypeVariables + , ConstraintKinds + , FlexibleInstances + , FlexibleContexts + , DeriveGeneric + , DeriveAnyClass + , TypeApplications + , AllowAmbiguousTypes + , StandaloneDeriving + , UndecidableInstances + #-} +module Laws where + +import GHC.Generics (Generic) +import Data.Functor.Free ( Free ) +import qualified Data.Functor.Free as Free ( rightAdjunct, unit ) +import Data.Functor.HFree ( HFree ) +import qualified Data.Functor.HFree as HFree ( rightAdjunct, unit ) +import Data.Kind (Type, Constraint) +import Test.QuickCheck ( quickCheck, Arbitrary(..), CoArbitrary, Gen ) + +import Data.Monoid (Sum) +import Control.Applicative (ZipList) + +data EQ a = a :=: a deriving (Eq, Show) +infix 4 :=: + +class Laws (c :: Type -> Constraint) where + type Var c :: Type + laws :: [EQ (Free c (Var c))] + +data VAR = X | Y | Z deriving (Eq, Show, Generic, CoArbitrary) + +instance Show a => Show (VAR -> a) where + show f = unlines $ map show [(X, f X), (Y, f Y), (Z, f Z)] + +x, y, z :: Free c VAR +x = Free.unit X +y = Free.unit Y +z = Free.unit Z + +instance Laws Semigroup where + type Var Semigroup = VAR + laws = [x <> (y <> z) :=: (x <> y) <> z] + +instance Laws Monoid where + type Var Monoid = VAR + laws = + [ x <> mempty :=: x + , mempty <> x :=: x + ] + +props :: forall c a. (Laws c, c a, Eq a) => (Var c -> a) -> Bool +props f = and $ (\(l :=: r) -> Free.rightAdjunct f l == Free.rightAdjunct f r) <$> laws @c + +checkLaws :: forall c a. (Laws c, c a, CoArbitrary (Var c), Arbitrary a, Eq a, Show (Var c -> a)) => IO () +checkLaws = quickCheck (props @c @a) + +run :: IO () +run = checkLaws @Semigroup @(Sum Double) + + +data EQ1 f a = f a :==: f a +deriving instance Eq (f a) => Eq (EQ1 f a) +deriving instance Show (f a) => Show (EQ1 f a) +infix 4 :==: + +class Laws1 (c :: (Type -> Type) -> Constraint) where + type Var1 c :: (Type -> Type) + type Param c :: Type + laws1 :: [EQ1 (HFree c (Var1 c)) (Param c)] + +data VAR1 a where + U :: VAR1 (Int -> Int) + V :: VAR1 (Int -> Int) + W :: VAR1 Int +deriving instance Eq (VAR1 a) +deriving instance Show (VAR1 a) + +u :: HFree c VAR1 (Int -> Int) +u = HFree.unit U +v :: HFree c VAR1 (Int -> Int) +v = HFree.unit V +w :: HFree c VAR1 Int +w = HFree.unit W + +instance Laws1 Applicative where + type Var1 Applicative = VAR1 + type Param Applicative = Int + laws1 = + [ (pure id <*> w) :==: w + , (pure (.) <*> u <*> v <*> w) :==: (u <*> (v <*> w)) + , (pure (+ 1) <*> pure 2) :==: pure 3 + , (u <*> pure 1) :==: (pure ($ 1) <*> u) + ] + +newtype Nat c f = Nat (forall a. Var1 c a -> f a) +instance (Functor f, Arbitrary (f Int), Arbitrary (f (Int -> Int))) => Arbitrary (Nat Applicative f) where + arbitrary = do + u' <- arbitrary :: Gen (f (Int -> Int)) + v' <- arbitrary :: Gen (f (Int -> Int)) + w' <- arbitrary :: Gen (f Int) + pure $ Nat \case + U -> u' + V -> v' + W -> w' +instance (Show (f Int), Show (f (Int -> Int))) => Show (Nat Applicative f) where + show (Nat f) = unlines [show (U, f U), show (V, f V), show (W, f W)] + +instance Show (Int -> Int) where + show f = ".." ++ (init . tail . show) [f (-2), f (-1), f 0, f 1, f 2] ++ ".." + +props1 :: forall c f. (Laws1 c, c f, Eq (f (Param c))) => Nat c f -> Bool +props1 (Nat f) = and $ (\(l :==: r) -> HFree.rightAdjunct f l == HFree.rightAdjunct f r) <$> laws1 @c + +checkLaws1 :: forall c f. (Laws1 c, c f, Eq (f (Param c)), Arbitrary (Nat c f), Functor f, Show (Nat c f)) => IO () +checkLaws1 = quickCheck (props1 @c @f) + +run1 :: IO () +run1 = checkLaws1 @Applicative @[]