forked from digitalcrab/browscap_go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.go
167 lines (141 loc) · 3.06 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Use of this source code is governed by a MIT
// license that can be found in the LICENSE file.
package browscap_go
import (
"math"
"sort"
"unicode"
)
type ExpressionTree struct {
root *node
}
func NewExpressionTree() *ExpressionTree {
return &ExpressionTree{
root: &node{},
}
}
func (r *ExpressionTree) Find(userAgent []byte) string {
res, _ := r.root.findBest(userAgent, math.MaxInt32)
return res
}
func (r *ExpressionTree) Add(name string, lineNum int) {
nameBytes := mapToBytes(unicode.ToLower, name)
exp := CompileExpression(nameBytes)
bytesPool.Put(nameBytes)
// https://github.com/browscap/browscap/wiki/Specification:-Lookup-Algorithm:
// If there are multiple matching patterns the longest pattern
// should be used to identify the browser. If there are multiple
// patterns of the longest length then the pattern that is
// earliest in the list of patterns should be used to identify the
// browser.
// The formula below implements this algorithm, with lower numbers
// being better.
if lineNum>>20 > 0 {
panic("Need more bits for lineNum!")
}
if len(nameBytes)>>10 > 0 {
panic("Need more bits for the UA regexp length!")
}
score := int32(((1<<10)-len(nameBytes))<<20 + lineNum)
last := r.root
for _, e := range exp {
var found *node
if e.Fuzzy() {
for _, node := range last.nodesFuzzy {
if node.token.Equal(e) {
found = node
break
}
}
} else {
for _, node := range last.nodesPure[e.Shard()] {
if node.token.Equal(e) {
found = node
break
}
}
}
if found == nil {
found = &node{
token: e,
}
last.addChild(found)
}
if score < found.topScore || found.topScore == 0 {
found.topScore = score
}
last = found
}
last.name = name
last.score = score
}
type node struct {
name string
score int32
topScore int32
token Token
nodesPure map[byte]nodes
nodesFuzzy nodes
}
func (n *node) addChild(a *node) {
if a.token.Fuzzy() {
n.nodesFuzzy = append(n.nodesFuzzy, a)
sort.Sort(n.nodesFuzzy)
} else {
if n.nodesPure == nil {
n.nodesPure = map[byte]nodes{}
}
shard := a.token.Shard()
n.nodesPure[shard] = append(n.nodesPure[shard], a)
sort.Sort(n.nodesPure[shard])
}
}
func (n *node) findBest(s []byte, minScore int32) (res string, maxScore int32) {
if n.topScore >= minScore {
return "", -1
}
match := false
if n.token.match != nil {
match, s = n.token.MatchOne(s)
if !match {
return "", n.topScore
}
if n.name != "" && len(s) == 0 {
return n.name, n.score
}
}
if len(s) == 0 {
return "", -1
}
for _, nd := range n.nodesPure[s[0]] {
r, ms := nd.findBest(s, minScore)
if ms > minScore {
break
}
if r != "" {
res = r
minScore = ms
}
}
for _, nd := range n.nodesFuzzy {
r, ms := nd.findBest(s, minScore)
if ms > minScore {
break
}
if r != "" {
res = r
minScore = ms
}
}
return res, minScore
}
type nodes []*node
func (n nodes) Len() int {
return len(n)
}
func (n nodes) Less(i, j int) bool {
return n[i].topScore < n[j].topScore
}
func (n nodes) Swap(i, j int) {
n[i], n[j] = n[j], n[i]
}