forked from NVlabs/stylegan2
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathprojector.py
executable file
·206 lines (178 loc) · 8.77 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
from training import misc
#----------------------------------------------------------------------------
class Projector:
def __init__(self):
self.num_steps = 1000
self.dlatent_avg_samples = 10000
self.initial_learning_rate = 0.1
self.initial_noise_factor = 0.05
self.lr_rampdown_length = 0.25
self.lr_rampup_length = 0.05
self.noise_ramp_length = 0.75
self.regularize_noise_weight = 1e5
self.verbose = False
self.clone_net = True
self._Gs = None
self._minibatch_size = None
self._dlatent_avg = None
self._dlatent_std = None
self._noise_vars = None
self._noise_init_op = None
self._noise_normalize_op = None
self._dlatents_var = None
self._noise_in = None
self._dlatents_expr = None
self._images_expr = None
self._target_images_var = None
self._lpips = None
self._dist = None
self._loss = None
self._reg_sizes = None
self._lrate_in = None
self._opt = None
self._opt_step = None
self._cur_step = None
def _info(self, *args):
if self.verbose:
print('Projector:', *args)
def set_network(self, Gs, minibatch_size=1):
assert minibatch_size == 1
self._Gs = Gs
self._minibatch_size = minibatch_size
if self._Gs is None:
return
if self.clone_net:
self._Gs = self._Gs.clone()
# Find dlatent stats.
self._info('Finding W midpoint and stddev using %d samples...' % self.dlatent_avg_samples)
latent_samples = np.random.RandomState(123).randn(self.dlatent_avg_samples, *self._Gs.input_shapes[0][1:])
dlatent_samples = self._Gs.components.mapping.run(latent_samples, None)[:, :1, :] # [N, 1, 512]
self._dlatent_avg = np.mean(dlatent_samples, axis=0, keepdims=True) # [1, 1, 512]
self._dlatent_std = (np.sum((dlatent_samples - self._dlatent_avg) ** 2) / self.dlatent_avg_samples) ** 0.5
self._info('std = %g' % self._dlatent_std)
# Find noise inputs.
self._info('Setting up noise inputs...')
self._noise_vars = []
noise_init_ops = []
noise_normalize_ops = []
while True:
n = 'G_synthesis/noise%d' % len(self._noise_vars)
if not n in self._Gs.vars:
break
v = self._Gs.vars[n]
self._noise_vars.append(v)
noise_init_ops.append(tf.assign(v, tf.random_normal(tf.shape(v), dtype=tf.float32)))
noise_mean = tf.reduce_mean(v)
noise_std = tf.reduce_mean((v - noise_mean)**2)**0.5
noise_normalize_ops.append(tf.assign(v, (v - noise_mean) / noise_std))
self._info(n, v)
self._noise_init_op = tf.group(*noise_init_ops)
self._noise_normalize_op = tf.group(*noise_normalize_ops)
# Image output graph.
self._info('Building image output graph...')
self._dlatents_var = tf.Variable(tf.zeros([self._minibatch_size] + list(self._dlatent_avg.shape[1:])), name='dlatents_var')
self._noise_in = tf.placeholder(tf.float32, [], name='noise_in')
dlatents_noise = tf.random.normal(shape=self._dlatents_var.shape) * self._noise_in
self._dlatents_expr = tf.tile(self._dlatents_var + dlatents_noise, [1, self._Gs.components.synthesis.input_shape[1], 1])
self._images_expr = self._Gs.components.synthesis.get_output_for(self._dlatents_expr, randomize_noise=False)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
proc_images_expr = (self._images_expr + 1) * (255 / 2)
sh = proc_images_expr.shape.as_list()
if sh[2] > 256:
factor = sh[2] // 256
proc_images_expr = tf.reduce_mean(tf.reshape(proc_images_expr, [-1, sh[1], sh[2] // factor, factor, sh[2] // factor, factor]), axis=[3,5])
# Loss graph.
self._info('Building loss graph...')
self._target_images_var = tf.Variable(tf.zeros(proc_images_expr.shape), name='target_images_var')
if self._lpips is None:
self._lpips = misc.load_pkl('http://d36zk2xti64re0.cloudfront.net/stylegan1/networks/metrics/vgg16_zhang_perceptual.pkl')
self._dist = self._lpips.get_output_for(proc_images_expr, self._target_images_var)
self._loss = tf.reduce_sum(self._dist)
# Noise regularization graph.
self._info('Building noise regularization graph...')
reg_loss = 0.0
for v in self._noise_vars:
sz = v.shape[2]
while True:
reg_loss += tf.reduce_mean(v * tf.roll(v, shift=1, axis=3))**2 + tf.reduce_mean(v * tf.roll(v, shift=1, axis=2))**2
if sz <= 8:
break # Small enough already
v = tf.reshape(v, [1, 1, sz//2, 2, sz//2, 2]) # Downscale
v = tf.reduce_mean(v, axis=[3, 5])
sz = sz // 2
self._loss += reg_loss * self.regularize_noise_weight
# Optimizer.
self._info('Setting up optimizer...')
self._lrate_in = tf.placeholder(tf.float32, [], name='lrate_in')
self._opt = dnnlib.tflib.Optimizer(learning_rate=self._lrate_in)
self._opt.register_gradients(self._loss, [self._dlatents_var] + self._noise_vars)
self._opt_step = self._opt.apply_updates()
def run(self, target_images):
# Run to completion.
self.start(target_images)
while self._cur_step < self.num_steps:
self.step()
# Collect results.
pres = dnnlib.EasyDict()
pres.dlatents = self.get_dlatents()
pres.noises = self.get_noises()
pres.images = self.get_images()
return pres
def start(self, target_images):
assert self._Gs is not None
# Prepare target images.
self._info('Preparing target images...')
target_images = np.asarray(target_images, dtype='float32')
target_images = (target_images + 1) * (255 / 2)
sh = target_images.shape
assert sh[0] == self._minibatch_size
if sh[2] > self._target_images_var.shape[2]:
factor = sh[2] // self._target_images_var.shape[2]
target_images = np.reshape(target_images, [-1, sh[1], sh[2] // factor, factor, sh[3] // factor, factor]).mean((3, 5))
# Initialize optimization state.
self._info('Initializing optimization state...')
tflib.set_vars({self._target_images_var: target_images, self._dlatents_var: np.tile(self._dlatent_avg, [self._minibatch_size, 1, 1])})
tflib.run(self._noise_init_op)
self._opt.reset_optimizer_state()
self._cur_step = 0
def step(self):
assert self._cur_step is not None
if self._cur_step >= self.num_steps:
return
if self._cur_step == 0:
self._info('Running...')
# Hyperparameters.
t = self._cur_step / self.num_steps
noise_strength = self._dlatent_std * self.initial_noise_factor * max(0.0, 1.0 - t / self.noise_ramp_length) ** 2
lr_ramp = min(1.0, (1.0 - t) / self.lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / self.lr_rampup_length)
learning_rate = self.initial_learning_rate * lr_ramp
# Train.
feed_dict = {self._noise_in: noise_strength, self._lrate_in: learning_rate}
_, dist_value, loss_value = tflib.run([self._opt_step, self._dist, self._loss], feed_dict)
tflib.run(self._noise_normalize_op)
# Print status.
self._cur_step += 1
if self._cur_step == self.num_steps or self._cur_step % 10 == 0:
self._info('%-8d%-12g%-12g' % (self._cur_step, dist_value, loss_value))
if self._cur_step == self.num_steps:
self._info('Done.')
def get_cur_step(self):
return self._cur_step
def get_dlatents(self):
return tflib.run(self._dlatents_expr, {self._noise_in: 0})
def get_noises(self):
return tflib.run(self._noise_vars)
def get_images(self):
return tflib.run(self._images_expr, {self._noise_in: 0})
#----------------------------------------------------------------------------