-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathPlasFlow.py
executable file
·465 lines (389 loc) · 18.7 KB
/
PlasFlow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/env python
#######################################################################################
### ###
### PlasFlow 1.1 ###
### Copyright (C) 2017 Pawel Krawczyk (p.krawczyk@ibb.waw.pl) ###
### ###
### This program is free software: you can redistribute it and/or modify ###
### it under the terms of the GNU General Public License as published by ###
### the Free Software Foundation, either version 3 of the License, or ###
### (at your option) any later version. ###
### ###
### This program is distributed in the hope that it will be useful, ###
### but WITHOUT ANY WARRANTY; without even the implied warranty of ###
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ###
### GNU General Public License for more details. ###
### ###
### You should have received a copy of the GNU General Public License ###
### along with this program. If not, see <http://www.gnu.org/licenses/>. ###
### ###
#######################################################################################
import os
import sys
import argparse
# parse command line arguments
parser = argparse.ArgumentParser(
description='PlasFlow v.1.1 - predicting plasmid sequences in metagenomic data using genome signatures. PlasFlow is based on the TensorFlow artificial neural network classifier')
parser.add_argument('--input', dest='inputfile', action='store',
help='Input fasta file with sequences to classify (required)', required=True)
parser.add_argument('--output', dest='outputfile', action='store',
help='Output file with classification results (required)', required=True)
parser.add_argument('--threshold', dest='threshold', action='store', type=float,
help='Threshold for probability filtering (default=0.7)', default=0.7)
parser.add_argument('--labels', dest='labels',
action='store', help='Custom labels file')
parser.add_argument('--models', dest='models',
action='store', help='Custom models localization')
parser.add_argument('--batch_size', dest='batch_size',
action='store', default=25000, help='Batch size for large datasets')
args = parser.parse_args()
import numpy as np
import pandas as pd
import rpy2
from rpy2.robjects.packages import importr
import rpy2.robjects as robjects
from rpy2.robjects import pandas2ri
import re
from Bio import SeqIO
import gc
# srcipt path is required to find the location of models used for classification (script_path/models)
script_path = os.path.dirname(os.path.realpath(sys.argv[0]))
#if custom models location is given use it
if(args.models):
models_path = args.models
else:
#else - expect to find models in the place where PlasFlow was installed
models_path = script_path + '/models'
#store maximum number of sequence analyzed in the singl batch of kmer frequencies calculation
max_sequences_per_batch = int(args.batch_size)
#initialize rpy2
r = robjects.r
# import Biostrings package for kmer quantification
biostrings = importr('Biostrings')
base = importr('base')
# import labels description
if (args.labels):
labels_df = pd.read_csv(args.labels, sep="\t")
else:
labels_df = pd.read_csv(
models_path + '/class_labels_df.tsv', sep="\t")
# number of classes in the labels file - should equal the number of classes in trained model, otherwise an error will be thrown on the later step
no_classes = labels_df.shape[0]
# get input file with sequences to process
inputfile = args.inputfile
print("Importing sequences")
# read data to classify and quanitify kmers
input_data = r.readDNAStringSet(inputfile)
no_sequences = r.length(input_data)[0]
print("Imported ", no_sequences, " sequences")
# get accessions of files
accessions = r.sub("(\S*)\s.*", "\\1", r.names(input_data), perl=True)
# create pandas frame with info about contigs (id, name, length)
pd_accessions = pandas2ri.ri2py(accessions)
pd_accessions = pd.DataFrame(pd_accessions)
pd_accessions.index.name = 'contig_name'
pd_accessions.reset_index(inplace=True)
pd_accessions.columns = ['contig_id', 'contig_name']
lengths = r.width(input_data)
pd_lengths = pandas2ri.ri2py(lengths)
pd_lengths = pd.DataFrame(pd_lengths)
pd_lengths.index.name = 'contig_id'
pd_lengths.reset_index(inplace=True)
pd_lengths.columns = ['contig_id', 'contig_length']
pd_contigs_info = pd.merge(pd_accessions, pd_lengths, on=['contig_id'])
pd_contigs_info
#Explicit garbage collection to remove unneccessary R objects from memory
r('rm(input_data)')
r('rm(accessions)')
r('rm(lengths)')
base.gc()
gc.collect()
#based on http://biopython.org/wiki/Split_large_file
def batch_iterator(iterator, batch_size):
"""Returns lists of length batch_size.
This can be used on any iterator, for example to batch up
SeqRecord objects from Bio.SeqIO.parse(...), or to batch
Alignment objects from Bio.AlignIO.parse(...), or simply
lines from a file handle.
This is a generator function, and it returns lists of the
entries from the supplied iterator. Each list will have
batch_size entries, although the final list may be shorter.
"""
entry = True # Make sure we loop once
while entry:
batch = []
while len(batch) < batch_size:
try:
entry = iterator.__next__()
except StopIteration:
entry = None
if entry is None:
# End of file
break
batch.append(entry)
if batch:
yield batch
# Create class defining single classifier
class tf_classif:
"""Main classifier."""
def __init__(self, kmer, hidden):
"""Initialize the class using kmer length and hidden neurons comfiguration."""
self.kmer = kmer
if (hidden == "30"):
self.hidden = [30]
elif (hidden == "20_20"):
self.hidden = [20, 20]
# set locations of models
if (kmer == 5):
if(hidden == "30"):
self.modeldir = models_path+ "/kmer5_split_30_neurons_relu/"
elif (hidden == "20_20"):
self.modeldir = models_path+ "/kmer5_split_20_20_neurons_relu/"
else:
print("Wrong hidden layers specification. Exiting...")
sys.exit()
elif (kmer == 6):
if(hidden == "30"):
self.modeldir = models_path+ "/kmer6_split_30_neurons_relu/"
elif (hidden == "20_20"):
self.modeldir = models_path+ "/kmer6_split_20_20_neurons_relu/"
else:
print("Wrong hidden layers specification. Exiting...")
sys.exit()
elif (kmer == 7):
if(hidden == "30"):
self.modeldir = models_path+ "/kmer7_split_30_neurons_relu/"
elif (hidden == "20_20"):
self.modeldir = models_path+ "/kmer7_split_20_20_neurons_relu/"
else:
print("Wrong hidden layers specification. Exiting...")
sys.exit()
else:
print("Wrong kmer number. Exiting...")
sys.exit()
def calculate_freq(self, input_data_path):
"""Calculate kmer frequencies and perform td-idf transformation."""
kmer = self.kmer
import os.path
file_name = str(input_data_path) + "_kmer_" + str(kmer) + '_freqs.npy'
# Try to load previously saved frequncies (TF-IDF transformed)
if os.path.isfile(file_name):
test_tfidf_nd = np.load(file_name)
self.no_features = test_tfidf_nd.shape[1]
self.testing_data = test_tfidf_nd
print("Succesfully read previously calculated kmer frequencies for kmer", kmer)
#if previous calculations are not available - calculate frequencies
else:
print("Calculating kmer frequencies using kmer", kmer)
#if there is more sequences in input than it is allowed, split file in smaller chunks and process them separately
if (no_sequences>max_sequences_per_batch):
print("Due to large number of sequences in the input file, it is splitted to smaller chunks (maximum size: " + str(max_sequences_per_batch) + " sequences)")
#split input file:
record_iter = SeqIO.parse(open(input_data_path),"fasta")
for i, batch in enumerate(batch_iterator(record_iter, max_sequences_per_batch)):
batch_filename = input_data_path + "_group_%i.fasta" % (i + 1)
print("processing chunk:",str(i + 1))
if os.path.isfile(batch_filename) is False: # if batch file not exists create one
with open(batch_filename, "w") as handle:
count = SeqIO.write(batch, handle, "fasta")
#read
temp_data = r.readDNAStringSet(batch_filename)
kmer_count_temp = r.oligonucleotideFrequency(temp_data, kmer)
kmer_count_temp_np = np.array(kmer_count_temp)
#merge temporary matrices
if i>0:
kmer_count = np.concatenate((kmer_count,kmer_count_temp_np))
else:
kmer_count = kmer_count_temp_np
else:
#calculate single batch for low number of sequences
temp_data = r.readDNAStringSet(input_data_path)
kmer_count_r = r.oligonucleotideFrequency(temp_data, kmer)
kmer_count = np.array(kmer_count_r)
self.no_features = kmer_count.shape[1]
#Explicit garbage collection to remove unneccessary R objects from memory
r('rm(temp_data)')
r('rm(kmer_count_r)')
base.gc()
gc.collect()
print("Transforming kmer frequencies")
# Tfidf transform data
from sklearn.feature_extraction.text import TfidfTransformer
transformer = TfidfTransformer(smooth_idf=False)
test_tfidf = transformer.fit_transform(kmer_count)
test_tfidf_nd = test_tfidf.toarray()
self.testing_data = test_tfidf_nd
print("Finished transforming, saving transformed values")
np.save(file_name,test_tfidf_nd)
def predict_proba_tf(self, data):
"""Perform actual prediction (with probabilities)."""
kmer = self.kmer
if not hasattr(self, 'testing_data'):
self.calculate_freq(data)
# import trained tensorflow model
import tensorflow as tf
feature_columns = [tf.contrib.layers.real_valued_column(
"", dimension=self.no_features)]
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=self.hidden,
n_classes=no_classes,
model_dir=self.modeldir)
print("Predicting labels using kmer", kmer, " frequencies")
# predict probabilities
new_test_proba = classifier.predict_proba(self.testing_data)
return new_test_proba
def predict(self, data):
"""Perform actual prediction (Without probabilities)."""
if not hasattr(self, 'testing_data'):
self.calculate_freq(data)
# import trained tensorflow model
import tensorflow as tf
feature_columns = [tf.contrib.layers.real_valued_column(
"", dimension=self.no_features)]
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=self.hidden,
n_classes=no_classes,
model_dir=self.modeldir)
# predict classes
new_test = classifier.predict(self.testing_data)
return new_test
# class for voting classifier
#based on http://sebastianraschka.com/Articles/2014_ensemble_classifier.html
class TF_Vote_Classifier:
"""Voting classifier class."""
def __init__(self, clfs, weights=None):
"""Initialize the voting classifier class."""
self.clfs = clfs
self.weights = weights
def predict_proba(self, X):
"""Return average probabilities."""
self.probas_ = [clf.predict_proba_tf(X) for clf in self.clfs]
print("Voting...")
avg = np.average(self.probas_, axis=0, weights=self.weights)
return avg
def predict(self, X):
"""Perform actual prediction."""
self.classes_ = np.asarray([clf.predict(X) for clf in self.clfs])
if self.weights:
avg = self.predict_proba_tf(X)
maj = np.apply_along_axis(lambda x: max(
enumerate(x), key=operator.itemgetter(1))[0], axis=1, arr=avg)
else:
maj = np.asarray([np.argmax(np.bincount(self.classes_[:, c]))
for c in range(self.classes_.shape[1])])
return maj
def return_individual_probas(self, data):
"""Return probabilities for individual classifiers."""
if hasattr(self, "probas_"):
return self.probas_
else:
return 0
def return_individual_classes(self, data):
"""Return classes outputted by each classifier."""
if hasattr(self, "classes_"):
return self.classes_
else:
return 0
# classifiers used in PlasFlow (2 hidden layers with 20 neurons in each for 5 and 6-mers and 1 hidden layer with 30 neurons for 7-mers)
kmer5_20_20 = tf_classif(5, "20_20")
kmer6_20_20 = tf_classif(6, "20_20")
kmer7_30 = tf_classif(7, "30")
# voting classifier
vote_class = TF_Vote_Classifier(clfs=[kmer5_20_20, kmer6_20_20, kmer7_30])
vote_proba = vote_class.predict_proba(inputfile)
vote = vote_class.predict(inputfile)
# results pandas dataframe:
pd_n = pd.DataFrame(vote)
# add columns with contig_id
pd_n.index.name = 'contig_id'
pd_n.reset_index(inplace=True)
pd_n.columns = ['contig_id', 'id']
pd_n_proba = pd.DataFrame(vote_proba)
pd_n_proba.columns = labels_df['label']
pd_n_proba.index.name = 'contig_id'
pd_n_proba.reset_index(inplace=True)
# add labels to classification results
results_merged = pd.merge(pd_n, labels_df, on=['id'])
results_merged_proba = pd.merge(results_merged, pd_n_proba, on=['contig_id'])
results_merged_proba_with_names = pd.merge(
pd_contigs_info, results_merged_proba, on=['contig_id'])
print("Filtering by probability threshold", args.threshold)
for index, row in results_merged_proba_with_names.iterrows():
label_name = row.label
taxname = label_name.split(".", 1)[1]
# TBD: FutureWarning: set_value is deprecated and will be removed in a future release. Please use .at[] or .iat[] accessors instead
if row[label_name] < args.threshold:
plasmids = row[[col for col in results_merged_proba_with_names.columns if re.match(
r'^plasmid.*', col)]]
plasmidssum = plasmids.sum()
chromosomes = row[[col for col in results_merged_proba_with_names.columns if re.match(
r'^chromosom.*', col)]]
chromosomessum = chromosomes.sum()
my_regex = r".*" + re.escape(taxname) + r""
taxnames = row[[
col for col in results_merged_proba_with_names.columns if re.match(my_regex, col)]]
taxnamessum = taxnames.sum()
if plasmidssum > args.threshold:
#temp = results_merged_proba_with_names.set_value(
# index, 'label', 'plasmid.unclassified')
results_merged_proba_with_names.at[index, 'label'] = 'plasmid.unclassified'
elif chromosomessum > args.threshold:
# temp = results_merged_proba_with_names.set_value(
# index, 'label', 'chromosome.unclassified')
results_merged_proba_with_names.at[index, 'label'] = 'chromosome.unclassified'
elif taxnamessum > args.threshold:
#temp = results_merged_proba_with_names.set_value(
# index, 'label', 'unclassified.' + taxname)
results_merged_proba_with_names.at[index, 'label'] = 'unclassified.' + taxname
else:
#temp = results_merged_proba_with_names.set_value(
# index, 'label', 'unclassified.unclassified')
results_merged_proba_with_names.at[index, 'label'] = 'unclassified.unclassified'
results_merged_proba_with_names.to_csv(args.outputfile, sep='\t')
taxons = {}
plasmids = {}
taxon_column = []
plasmid_column = []
for index, row in results_merged_proba_with_names.iterrows():
label_name = row.label
taxname = label_name.split(".", 1)[1]
plasmid = label_name.split(".", 1)[0]
if taxname in taxons.keys():
taxons[taxname] = taxons[taxname] + 1
else:
taxons[taxname] = 1
if plasmid in plasmids.keys():
plasmids[plasmid] = plasmids[plasmid] + 1
else:
plasmids[plasmid] = 1
taxon_column.append(taxname)
plasmid_column.append(plasmid)
plasmids_pd = pd.DataFrame.from_dict(plasmids, orient="index")
taxons_pd = pd.DataFrame.from_dict(taxons, orient="index")
plasmids_pd = plasmids_pd.transpose()
taxons_pd = taxons_pd.transpose()
print("\nResulting plasmid sequences prediction:")
print(plasmids_pd)
print("\nResulting taxonomical assignment:")
print(taxons_pd)
print("\nOutputting fasta files with classified sequences")
sequences_dict = SeqIO.index(args.inputfile, "fasta")
plasmid_sequences = []
chromosome_sequences = []
unclassified_sequences = []
for index, row in results_merged_proba_with_names.iterrows():
label_name = row.label
contig_name = row.contig_name
processed_sequence = sequences_dict[contig_name]
processed_sequence.id = processed_sequence.id + " " + label_name
if re.match(r'^chromosome.*', label_name):
chromosome_sequences.append(processed_sequence)
elif re.match(r'^plasmid.*', label_name):
plasmid_sequences.append(processed_sequence)
else:
unclassified_sequences.append(processed_sequence)
SeqIO.write(chromosome_sequences, args.outputfile +
"_chromosomes.fasta", "fasta")
SeqIO.write(plasmid_sequences, args.outputfile + "_plasmids.fasta", "fasta")
SeqIO.write(unclassified_sequences, args.outputfile +
"_unclassified.fasta", "fasta")