-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChairAnalyser.py
197 lines (154 loc) · 8.15 KB
/
ChairAnalyser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import joblib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from GeneralAnalyser import GeneralAnalyser
# TODO: add the name because the same analyser can be used for many plots
class ChairAnalyser(GeneralAnalyser):
def __init__(self,
df,
pic_prefix,
sensor_name,
session_id,
events_intervals_list=None,
interval=2,
# measurement_interval=0.01,
# measurements_per_batch=1000,
name=None,
reaction_multiplier=5,
):
super().__init__(df, pic_prefix, sensor_name, session_id, name)
self.interval = interval
self.reaction_multiplier = reaction_multiplier
self.events_intervals_list = events_intervals_list
# self.sensor_columns = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
self.sensor_columns = ['acc_x', 'gyro_x', 'acc_y', 'gyro_y', 'acc_z', 'gyro_z']
def get_floating_features(self, interval=2):
# time_interval = f'{interval}s'
time_interval = f'{int(interval * 1000)}ms'
df2roll = self.df.loc[:, ['time'] + self.sensor_columns].set_index('time')
df2roll.index = pd.to_timedelta(df2roll.index, unit='s')
df_rolling = df2roll.rolling(time_interval) # Can't be centered by default
stds = df_rolling.std()
# stds.columns = [f'{column}_std_{time_interval}' for column in stds.columns]
stds.columns = [f'{column}_std' for column in stds.columns]
stds.reset_index(drop=True, inplace=True)
return stds
def _append_floating_features(self, interval=2):
floating_std = self.get_floating_features(interval)
self.df = pd.concat([self.df, floating_std], axis=1)
def get_reactions_mask(self, floating_std, medians, reaction_multiplier):
reaction_levels = medians * reaction_multiplier
reactions_masks = floating_std > reaction_levels.values
return reactions_masks
def get_events_masks_dict(self, events_intervals_list):
events_masks_dict = {}
for events_intervals in events_intervals_list:
mask_interval = events_intervals.get_mask_intervals_union(self.df['time'])
event_label = events_intervals.label
events_masks_dict[event_label] = mask_interval
return events_masks_dict
def get_reaction_events_features(self, reactions_mask, events_masks_dict):
reactions_mask_sum = reactions_mask.sum(axis=0)
reaction_events_features_dict = {}
for event_label, event_mask in events_masks_dict.items():
event_mask_sum = event_mask.sum()
# print(type(reactions_mask), type(event_mask))
reactions_mask_events = reactions_mask.values & event_mask.reshape(-1, 1)
reactions_mask_events_sum = pd.Series(reactions_mask_events.sum(axis=0), index=reactions_mask_sum.index)
# events_in_reactions = reactions_mask_events_sum / reactions_mask_sum
# events_in_reactions.index = [f'events_in_reactions__{event_label}__{index}' for index in events_in_reactions.index]
# reaction_events_features_dict.update(events_in_reactions.to_dict())
reactions_in_events = reactions_mask_events_sum / event_mask_sum
# reactions_in_events.index = [f'reactions_in_events__{event_label}__{index}' for index in reactions_in_events.index]
reactions_in_events.index = [f'moving_{event_label}_{index[:-4]}' for index in reactions_in_events.index]
reaction_events_features_dict.update(reactions_in_events.to_dict())
return reaction_events_features_dict
def get_reaction_features(self, reactions_mask):
reactions_mask_mean = reactions_mask.mean(axis=0)
# reactions_mask_mean.index = [f'reactions_{index}' for index in reactions_mask_mean.index]
reactions_mask_mean.index = [f'moving_{index[:-4]}' for index in reactions_mask_mean.index]
return reactions_mask_mean.to_dict()
def get_lean_back_portion(self, acc_z_threshold=0.97):
lean_back_portion = (self.df[['acc_z']] < acc_z_threshold).mean()
# lean_back_portion.index = ['lean_back_portion']
# lean_back_portion.name = self.name
return {
# 'lean_back_portion': lean_back_portion.values[0],
'lean_back': lean_back_portion.values[0],
}
def get_features(self, interval=None, reaction_multiplier=None):
if interval is None:
interval = self.interval
if reaction_multiplier is None:
reaction_multiplier = self.reaction_multiplier
floating_std = self.get_floating_features(interval)
floating_std_median = floating_std.quantile(0.5, axis=0)
# floating_std_median.index = [f'median_{index}' for index in floating_std_median.index]
floating_std_median.index = [f'med_{index}' for index in floating_std_median.index]
reactions_mask = self.get_reactions_mask(floating_std, floating_std_median, reaction_multiplier=reaction_multiplier)
reaction_features = self.get_reaction_features(reactions_mask)
oscillations_features = floating_std_median.to_dict()
lean_back_portion = self.get_lean_back_portion()
features_list = [reaction_features, oscillations_features, lean_back_portion]
if self.events_intervals_list is not None:
events_masks_dict = self.get_events_masks_dict(self.events_intervals_list)
reaction_events_features = self.get_reaction_events_features(reactions_mask, events_masks_dict)
features_list.append(reaction_events_features)
all_features_dict = {}
for features in features_list:
all_features_dict.update(features)
all_features = pd.Series(all_features_dict, name=self.session_id)
return all_features
# # def create_mean_stds(self, columns=('acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z')):
# def create_mean_stds(self):
# df_chair = self.df.loc[:, self.sensor_columns]
# # df_chair = df_chair.loc[:, columns]
# # medians, lower_bounds, upper_bounds = np.percentile(df_chair, [50, percentile2crop, 100 - percentile2crop], axis=0)
#
# means = df_chair.mean(axis=0)
# medians = df_chair.median(axis=0)
# stds = df_chair.std(axis=0)
#
# return means, stds, medians
#
# def get_nonstationary_values_portion(self, n_sigma=3):
# means = self.means
# stds = self.stds
#
# columns = stds.index
# df_chair = self.df.loc[:, columns]
#
# lower_bounds = means - n_sigma * stds
# upper_bounds = means + n_sigma * stds
#
# low_values_means = (df_chair.loc[:, columns] < lower_bounds).mean()
# high_values_means = (df_chair.loc[:, columns] > upper_bounds).mean()
#
# nonstationary_values_portion = low_values_means + high_values_means
# nonstationary_values_portion.index = [colname + '__nonstationary_portion' for colname in nonstationary_values_portion.index]
# nonstationary_values_portion.name = self.name
#
# return nonstationary_values_portion
#
# def get_oscillation_intensity(self, percentile2crop=10, columns=('acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z')):
# df_chair = self.df.loc[:, columns]
# result = {}
#
# for column in columns:
# lower_bounds, upper_bounds = np.percentile(df_chair.loc[:, column], [percentile2crop, 100 - percentile2crop], axis=0)
# # intervals = upper_bounds - lower_bounds
# low_values_mask = (df_chair.loc[:, column] < lower_bounds)
# high_values_mask = (df_chair.loc[:, column] > upper_bounds)
#
# normal_values_mask = (~low_values_mask) & (~high_values_mask)
#
# usual_sitting_stds = df_chair.loc[normal_values_mask, column].std()
# oscillations = usual_sitting_stds# / intervals
# feature_name = f'{column}__oscillations'
# result[feature_name] = oscillations
#
# result = pd.Series(result)
# result.name = self.name
#
# return result