-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathdoc.go
1307 lines (940 loc) · 56.4 KB
/
doc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Package gosnowflake is a pure Go Snowflake driver for the database/sql package.
Clients can use the database/sql package directly. For example:
import (
"database/sql"
_ "github.com/snowflakedb/gosnowflake"
"log"
)
func main() {
db, err := sql.Open("snowflake", "user:password@my_organization-my_account/mydb")
if err != nil {
log.Fatal(err)
}
defer db.Close()
...
}
# Connection String
Use the Open() function to create a database handle with connection parameters:
db, err := sql.Open("snowflake", "<connection string>")
The Go Snowflake Driver supports the following connection syntaxes (or data source name (DSN) formats):
- username[:password]@<account_identifier>/dbname/schemaname[?param1=value&...¶mN=valueN]
- username[:password]@<account_identifier>/dbname[?param1=value&...¶mN=valueN]
- username[:password]@hostname:port/dbname/schemaname?account=<account_identifier>[¶m1=value&...¶mN=valueN]
where all parameters must be escaped or use Config and DSN to construct a DSN string.
For information about account identifiers, see the Snowflake documentation
(https://docs.snowflake.com/en/user-guide/admin-account-identifier.html).
The following example opens a database handle with the Snowflake account
named "my_account" under the organization named "my_organization",
where the username is "jsmith", password is "mypassword", database is "mydb",
schema is "testschema", and warehouse is "mywh":
db, err := sql.Open("snowflake", "jsmith:mypassword@my_organization-my_account/mydb/testschema?warehouse=mywh")
# Connection Parameters
The connection string (DSN) can contain both connection parameters (described below) and session parameters
(https://docs.snowflake.com/en/sql-reference/parameters.html).
The following connection parameters are supported:
- account <string>: Specifies your Snowflake account, where "<string>" is the account
identifier assigned to your account by Snowflake.
For information about account identifiers, see the Snowflake documentation
(https://docs.snowflake.com/en/user-guide/admin-account-identifier.html).
If you are using a global URL, then append the connection group and ".global"
(e.g. "<account_identifier>-<connection_group>.global"). The account identifier and the
connection group are separated by a dash ("-"), as shown above.
This parameter is optional if your account identifier is specified after the "@" character
in the connection string.
- region <string>: DEPRECATED. You may specify a region, such as
"eu-central-1", with this parameter. However, since this parameter
is deprecated, it is best to specify the region as part of the
account parameter. For details, see the description of the account
parameter.
- database: Specifies the database to use by default in the client session
(can be changed after login).
- schema: Specifies the database schema to use by default in the client
session (can be changed after login).
- warehouse: Specifies the virtual warehouse to use by default for queries,
loading, etc. in the client session (can be changed after login).
- role: Specifies the role to use by default for accessing Snowflake
objects in the client session (can be changed after login).
- passcode: Specifies the passcode provided by Duo when using multi-factor authentication (MFA) for login.
- passcodeInPassword: false by default. Set to true if the MFA passcode is embedded
in the login password. Appends the MFA passcode to the end of the password.
- loginTimeout: Specifies the timeout, in seconds, for login. The default
is 60 seconds. The login request gives up after the timeout length if the
HTTP response is success.
- requestTimeout: Specifies the timeout, in seconds, for a query to complete.
0 (zero) specifies that the driver should wait indefinitely. The default is 0 seconds.
The query request gives up after the timeout length if the HTTP response is success.
- authenticator: Specifies the authenticator to use for authenticating user credentials:
- To use the internal Snowflake authenticator, specify snowflake (Default). If you want to cache your MFA logins, use AuthTypeUsernamePasswordMFA authenticator.
- To authenticate through Okta, specify https://<okta_account_name>.okta.com (URL prefix for Okta).
- To authenticate using your IDP via a browser, specify externalbrowser.
- To authenticate via OAuth, specify oauth and provide an OAuth Access Token (see the token parameter below).
- application: Identifies your application to Snowflake Support.
- disableOCSPChecks: false by default. Set to true to bypass the Online
Certificate Status Protocol (OCSP) certificate revocation check.
IMPORTANT: Change the default value for testing or emergency situations only.
- insecureMode: deprecated. Use disableOCSPChecks instead.
- token: a token that can be used to authenticate. Should be used in conjunction with the "oauth" authenticator.
- client_session_keep_alive: Set to true have a heartbeat in the background every hour to keep the connection alive
such that the connection session will never expire. Care should be taken in using this option as it opens up
the access forever as long as the process is alive.
- ocspFailOpen: true by default. Set to false to make OCSP check fail closed mode.
- validateDefaultParameters: true by default. Set to false to disable checks on existence and privileges check for
Database, Schema, Warehouse and Role when setting up the connection
- tracing: Specifies the logging level to be used. Set to error by default.
Valid values are trace, debug, info, print, warning, error, fatal, panic.
- disableQueryContextCache: disables parsing of query context returned from server and resending it to server as well.
Default value is false.
- clientConfigFile: specifies the location of the client configuration json file.
In this file you can configure Easy Logging feature.
- disableSamlURLCheck: disables the SAML URL check. Default value is false.
All other parameters are interpreted as session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html).
For example, the TIMESTAMP_OUTPUT_FORMAT session parameter can be set by adding:
...&TIMESTAMP_OUTPUT_FORMAT=MM-DD-YYYY...
A complete connection string looks similar to the following:
my_user_name:my_password@ac123456/my_database/my_schema?my_warehouse=inventory_warehouse&role=my_user_role&DATE_OUTPUT_FORMAT=YYYY-MM-DD
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
connection connection session
parameter parameter parameter
Session-level parameters can also be set by using the SQL command "ALTER SESSION"
(https://docs.snowflake.com/en/sql-reference/sql/alter-session.html).
Alternatively, use OpenWithConfig() function to create a database handle with the specified Config.
# Connection Config
You can also connect to your warehouse using the connection config. The dbSql library states that when you want to take advantage of driver-specific connection features that aren’t
available in a connection string. Each driver supports its own set of connection properties, often providing ways to customize the connection request specific to the DBMS
For example:
c := &gosnowflake.Config{
~your credentials go here~
}
connector := gosnowflake.NewConnector(gosnowflake.SnowflakeDriver{}, *c)
db := sql.OpenDB(connector)
If you are using this method, you dont need to pass a driver name to specify the driver type in which
you are looking to connect. Since the driver name is not needed, you can optionally bypass driver registration
on startup. To do this, set `GOSNOWFLAKE_SKIP_REGISTERATION` in your environment. This is useful you wish to
register multiple verions of the driver.
Note: `GOSNOWFLAKE_SKIP_REGISTERATION` should not be used if sql.Open() is used as the method
to connect to the server, as sql.Open will require registration so it can map the driver name
to the driver type, which in this case is "snowflake" and SnowflakeDriver{}.
You can load the connnection configuration with .toml file format.
With two environment variables, `SNOWFLAKE_HOME` (`connections.toml` file directory) and `SNOWFLAKE_DEFAULT_CONNECTION_NAME` (DSN name),
the driver will search the config file and load the connection. You can find how to use this connection way at ./cmd/tomlfileconnection
or Snowflake doc: https://docs.snowflake.com/en/developer-guide/snowflake-cli-v2/connecting/specify-credentials
# Proxy
The Go Snowflake Driver honors the environment variables HTTP_PROXY, HTTPS_PROXY and NO_PROXY for the forward proxy setting.
NO_PROXY specifies which hostname endings should be allowed to bypass the proxy server, e.g. no_proxy=.amazonaws.com means that Amazon S3 access does not need to go through the proxy.
NO_PROXY does not support wildcards. Each value specified should be one of the following:
- The end of a hostname (or a complete hostname), for example: ".amazonaws.com" or "xy12345.snowflakecomputing.com".
- An IP address, for example "192.196.1.15".
If more than one value is specified, values should be separated by commas, for example:
no_proxy=localhost,.my_company.com,xy12345.snowflakecomputing.com,192.168.1.15,192.168.1.16
# Logging
By default, the driver's builtin logger is exposing logrus's FieldLogger and default at INFO level.
Users can use SetLogger in driver.go to set a customized logger for gosnowflake package.
In order to enable debug logging for the driver, user could use SetLogLevel("debug") in SFLogger interface
as shown in demo code at cmd/logger.go. To redirect the logs SFlogger.SetOutput method could do the work.
If you want to define S3 client logging, override S3LoggingMode variable using configuration: https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/aws#ClientLogMode
Example:
import (
sf "github.com/snowflakedb/gosnowflake"
"github.com/aws/aws-sdk-go-v2/aws"
)
...
sf.S3LoggingMode = aws.LogRequest | aws.LogResponseWithBody | aws.LogRetries
# Query tag
A custom query tag can be set in the context. Each query run with this context
will include the custom query tag as metadata that will appear in the Query Tag
column in the Query History log. For example:
queryTag := "my custom query tag"
ctxWithQueryTag := WithQueryTag(ctx, queryTag)
rows, err := db.QueryContext(ctxWithQueryTag, query)
# Query request ID
A specific query request ID can be set in the context and will be passed through
in place of the default randomized request ID. For example:
requestID := ParseUUID("6ba7b812-9dad-11d1-80b4-00c04fd430c8")
ctxWithID := WithRequestID(ctx, requestID)
rows, err := db.QueryContext(ctxWithID, query)
# Last query ID
If you need query ID for your query you have to use raw connection.
For queries:
```
err := conn.Raw(func(x any) error {
stmt, err := x.(driver.ConnPrepareContext).PrepareContext(ctx, "SELECT 1")
rows, err := stmt.(driver.StmtQueryContext).QueryContext(ctx, nil)
rows.(SnowflakeRows).GetQueryID()
stmt.(SnowflakeStmt).GetQueryID()
return nil
}
```
For execs:
```
err := conn.Raw(func(x any) error {
stmt, err := x.(driver.ConnPrepareContext).PrepareContext(ctx, "INSERT INTO TestStatementQueryIdForExecs VALUES (1)")
result, err := stmt.(driver.StmtExecContext).ExecContext(ctx, nil)
result.(SnowflakeResult).GetQueryID()
stmt.(SnowflakeStmt).GetQueryID()
return nil
}
```
# Fetch Results by Query ID
The result of your query can be retrieved by setting the query ID in the WithFetchResultByID context.
```
// Get the query ID using raw connection as mentioned above:
err := conn.Raw(func(x any) error {
rows1, err = x.(driver.QueryerContext).QueryContext(ctx, "SELECT 1", nil)
queryID = rows1.(sf.SnowflakeRows).GetQueryID()
return nil
}
// Update the Context object to specify the query ID
fetchResultByIDCtx = sf.WithFetchResultByID(ctx, queryID)
// Execute an empty string query
rows2, err := db.QueryContext(fetchResultByIDCtx, "")
// Retrieve the results as usual
for rows2.Next() {
err = rows2.Scan(...)
...
}
```
# Canceling Query by CtrlC
From 0.5.0, a signal handling responsibility has moved to the applications. If you want to cancel a
query/command by Ctrl+C, add a os.Interrupt trap in context to execute methods that can take the context parameter
(e.g. QueryContext, ExecContext).
// handle interrupt signal
ctx, cancel := context.WithCancel(context.Background())
c := make(chan os.Signal, 1)
signal.Notify(c, os.Interrupt)
defer func() {
signal.Stop(c)
}()
go func() {
select {
case <-c:
cancel()
case <-ctx.Done():
}
}()
... (connection)
// execute a query
rows, err := db.QueryContext(ctx, query)
... (Ctrl+C to cancel the query)
See cmd/selectmany.go for the full example.
# Supported Data Types
The Go Snowflake Driver now supports the Arrow data format for data transfers
between Snowflake and the Golang client. The Arrow data format avoids extra
conversions between binary and textual representations of the data. The Arrow
data format can improve performance and reduce memory consumption in clients.
Snowflake continues to support the JSON data format.
The data format is controlled by the session-level parameter
GO_QUERY_RESULT_FORMAT. To use JSON format, execute:
ALTER SESSION SET GO_QUERY_RESULT_FORMAT = 'JSON';
The valid values for the parameter are:
- ARROW (default)
- JSON
If the user attempts to set the parameter to an invalid value, an error is
returned.
The parameter name and the parameter value are case-insensitive.
This parameter can be set only at the session level.
Usage notes:
- The Arrow data format reduces rounding errors in floating point numbers. You might see slightly
different values for floating point numbers when using Arrow format than when using JSON format.
In order to take advantage of the increased precision, you must pass in the context.Context object
provided by the WithHigherPrecision function when querying.
- Traditionally, the rows.Scan() method returned a string when a variable of types interface was passed
in. Turning on the flag ENABLE_HIGHER_PRECISION via WithHigherPrecision will return the natural,
expected data type as well.
- For some numeric data types, the driver can retrieve larger values when using the Arrow format than
when using the JSON format. For example, using Arrow format allows the full range of SQL NUMERIC(38,0)
values to be retrieved, while using JSON format allows only values in the range supported by the
Golang int64 data type.
Users should ensure that Golang variables are declared using the appropriate data type for the full
range of values contained in the column. For an example, see below.
When using the Arrow format, the driver supports more Golang data types and
more ways to convert SQL values to those Golang data types. The table below
lists the supported Snowflake SQL data types and the corresponding Golang
data types. The columns are:
1. The SQL data type.
2. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from
Arrow data format via an interface{}.
3. The possible Golang data types that can be returned when you use snowflakeRows.Scan() to read data
from Arrow data format directly.
4. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from
JSON data format via an interface{}. (All returned values are strings.)
5. The standard Golang data type that is returned when you use snowflakeRows.Scan() to read data from
JSON data format directly.
Go Data Types for Scan()
===================================================================================================================
| ARROW | JSON
===================================================================================================================
SQL Data Type | Default Go Data Type | Supported Go Data | Default Go Data Type | Supported Go Data
| for Scan() interface{} | Types for Scan() | for Scan() interface{} | Types for Scan()
===================================================================================================================
BOOLEAN | bool | string | bool
-------------------------------------------------------------------------------------------------------------------
VARCHAR | string | string
-------------------------------------------------------------------------------------------------------------------
DOUBLE | float32, float64 [1] , [2] | string | float32, float64
-------------------------------------------------------------------------------------------------------------------
INTEGER that | int, int8, int16, int32, int64 | string | int, int8, int16,
fits in int64 | [1] , [2] | | int32, int64
-------------------------------------------------------------------------------------------------------------------
INTEGER that doesn't | int, int8, int16, int32, int64, *big.Int | string | error
fit in int64 | [1] , [2] , [3] , [4] |
-------------------------------------------------------------------------------------------------------------------
NUMBER(P, S) | float32, float64, *big.Float | string | float32, float64
where S > 0 | [1] , [2] , [3] , [5] |
-------------------------------------------------------------------------------------------------------------------
DATE | time.Time | string | time.Time
-------------------------------------------------------------------------------------------------------------------
TIME | time.Time | string | time.Time
-------------------------------------------------------------------------------------------------------------------
TIMESTAMP_LTZ | time.Time | string | time.Time
-------------------------------------------------------------------------------------------------------------------
TIMESTAMP_NTZ | time.Time | string | time.Time
-------------------------------------------------------------------------------------------------------------------
TIMESTAMP_TZ | time.Time | string | time.Time
-------------------------------------------------------------------------------------------------------------------
BINARY | []byte | string | []byte
-------------------------------------------------------------------------------------------------------------------
ARRAY [6] | string / array | string / array
-------------------------------------------------------------------------------------------------------------------
OBJECT [6] | string / struct | string / struct
-------------------------------------------------------------------------------------------------------------------
VARIANT | string | string
-------------------------------------------------------------------------------------------------------------------
MAP | map | map
[1] Converting from a higher precision data type to a lower precision data type via the snowflakeRows.Scan()
method can lose low bits (lose precision), lose high bits (completely change the value), or result in error.
[2] Attempting to convert from a higher precision data type to a lower precision data type via interface{}
causes an error.
[3] Higher precision data types like *big.Int and *big.Float can be accessed by querying with a context
returned by WithHigherPrecision().
[4] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to
those data types by using .Int64()/.String()/.Uint64() methods. For an example, see below.
[5] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to
those data types by using .Float32()/.String()/.Float64() methods. For an example, see below.
[6] Arrays and objects can be either semistructured or structured, see more info in section below.
Note: SQL NULL values are converted to Golang nil values, and vice-versa.
# Semistructured and structured types
Snowflake supports two flavours of "structured data" - semistructured and structured.
Semistructured types are variants, objects and arrays without schema.
When data is fetched, it's represented as strings and the client is responsible for its interpretation.
Example table definition:
CREATE TABLE semistructured (v VARIANT, o OBJECT, a ARRAY)
The data not have any corresponding schema, so values in table may be slightly different.
Semistuctured variants, objects and arrays are always represented as strings for scanning:
rows, err := db.Query("SELECT {'a': 'b'}::OBJECT")
// handle error
defer rows.Close()
rows.Next()
var v string
err := rows.Scan(&v)
When inserting, a marker indicating correct type must be used, for example:
db.Exec("CREATE TABLE test_object_binding (obj OBJECT)")
db.Exec("INSERT INTO test_object_binding SELECT (?)", DataTypeObject, "{'s': 'some string'}")
Structured types differentiate from semistructured types by having specific schema.
In all rows of the table, values must conform to this schema.
Example table definition:
CREATE TABLE structured (o OBJECT(s VARCHAR, i INTEGER), a ARRAY(INTEGER), m MAP(VARCHAR, BOOLEAN))
To retrieve structured objects, follow these steps:
1. Create a struct implementing sql.Scanner interface, example:
a)
type simpleObject struct {
s string
i int32
}
func (so *simpleObject) Scan(val any) error {
st := val.(StructuredObject)
var err error
if so.s, err = st.GetString("s"); err != nil {
return err
}
if so.i, err = st.GetInt32("i"); err != nil {
return err
}
return nil
}
b)
type simpleObject struct {
S string `sf:"otherName"`
I int32 `sf:"i,ignore"`
}
func (so *simpleObject) Scan(val any) error {
st := val.(StructuredObject)
return st.ScanTo(so)
}
Automatic scan goes through all fields in a struct and read object fields.
Struct fields have to be public.
Embedded structs have to be pointers.
Matching name is built using struct field name with first letter lowercase.
Additionally, `sf` tag can be added:
- first value is always a name of a field in an SQL object
- additionally `ignore` parameter can be passed to omit this field
2. Use WithStructuredTypesEnabled context while querying data.
3. Use it in regular scan:
var res simpleObject
err := rows.Scan(&res)
See StructuredObject for all available operations including null support, embedding nested structs, etc.
Retrieving array of simple types works exactly the same like normal values - using Scan function.
You can use WithMapValuesNullable and WithArrayValuesNullable contexts to handle null values in, respectively, maps
and arrays of simple types in the database. In that case, sql null types will be used:
ctx := WithArrayValuesNullable(WithStructuredTypesEnabled(context.Background))
...
var res []sql.NullBool
err := rows.Scan(&res)
If you want to scan array of structs, you have to use a helper function ScanArrayOfScanners:
var res []*simpleObject
err := rows.Scan(ScanArrayOfScanners(&res))
Retrieving structured maps is very similar to retrieving arrays:
var res map[string]*simpleObject
err := rows.Scan(ScanMapOfScanners(&res))
To bind structured objects use:
1. Create a type which implements a StructuredObjectWriter interface, example:
a)
type simpleObject struct {
s string
i int32
}
func (so *simpleObject) Write(sowc StructuredObjectWriterContext) error {
if err := sowc.WriteString("s", so.s); err != nil {
return err
}
if err := sowc.WriteInt32("i", so.i); err != nil {
return err
}
return nil
}
b)
type simpleObject struct {
S string `sf:"otherName"`
I int32 `sf:"i,ignore"`
}
func (so *simpleObject) Write(sowc StructuredObjectWriterContext) error {
return sowc.WriteAll(so)
}
2. Use an instance as regular bind.
3. If you need to bind nil value, use special syntax:
db.Exec('INSERT INTO some_table VALUES ?', sf.DataTypeNilObject, reflect.TypeOf(simpleObject{})
Binding structured arrays are like any other parameter.
The only difference is - if you want to insert empty array (not nil but empty), you have to use:
db.Exec('INSERT INTO some_table VALUES ?', sf.DataTypeEmptyArray, reflect.TypeOf(simpleObject{}))
# Using higher precision numbers
The following example shows how to retrieve very large values using the math/big
package. This example retrieves a large INTEGER value to an interface and then
extracts a big.Int value from that interface. If the value fits into an int64,
then the code also copies the value to a variable of type int64. Note that a
context that enables higher precision must be passed in with the query.
import "context"
import "math/big"
...
var my_interface interface{}
var my_big_int_pointer *big.Int
var my_int64 int64
var rows snowflakeRows
...
rows = db.QueryContext(WithHigherPrecision(context.Background), <query>)
rows.Scan(&my_interface)
my_big_int_pointer, ok = my_interface.(*big.Int)
if my_big_int_pointer.IsInt64() {
my_int64 = my_big_int_pointer.Int64()
}
If the variable named "rows" is known to contain a big.Int, then you can use the following instead of scanning into an interface
and then converting to a big.Int:
rows.Scan(&my_big_int_pointer)
If the variable named "rows" contains a big.Int, then each of the following fails:
rows.Scan(&my_int64)
my_int64, _ = my_interface.(int64)
Similar code and rules also apply to big.Float values.
If you are not sure what data type will be returned, you can use code similar to the following to check the data type
of the returned value:
// Create variables into which you can scan the returned values.
var i64 int64
var bigIntPtr *big.Int
for rows.Next() {
// Get the data type info.
column_types, err := rows.ColumnTypes()
if err != nil {
log.Fatalf("ERROR: ColumnTypes() failed. err: %v", err)
}
// The data type of the zeroeth column in the row.
column_type := column_types[0].ScanType()
// Choose the appropriate variable based on the data type.
switch column_type {
case reflect.TypeOf(i64):
err = rows.Scan(&i64)
fmt.Println("INFO: retrieved int64 value:")
fmt.Println(i64)
case reflect.TypeOf(bigIntPtr):
err = rows.Scan(&bigIntPtr)
fmt.Println("INFO: retrieved bigIntPtr value:")
fmt.Println(bigIntPtr)
}
}
# Arrow batches
You can retrieve data in a columnar format similar to the format a server returns, without transposing them to rows.
When working with the arrow columnar format in go driver, ArrowBatch structs are used. These are structs
mostly corresponding to data chunks received from the backend. They allow for access to specific arrow.Record structs.
An ArrowBatch can exist in a state where the underlying data has not yet been loaded. The data is downloaded and
translated only on demand. Translation options are retrieved from a context.Context interface, which is either
passed from query context or set by the user using WithContext(ctx) method.
In order to access them you must use `WithArrowBatches` context, similar to the following:
var rows driver.Rows
err = conn.Raw(func(x interface{}) error {
rows, err = x.(driver.QueryerContext).QueryContext(ctx, query, nil)
return err
})
...
batches, err := rows.(sf.SnowflakeRows).GetArrowBatches()
... // use Arrow records
This returns []*ArrowBatch.
ArrowBatch functions:
GetRowCount():
Returns the number of rows in the ArrowBatch. Note that this returns 0 if the data has not yet been loaded,
irrespective of it’s actual size.
WithContext(ctx context.Context):
Sets the context of the ArrowBatch to the one provided. Note that the context will not retroactively apply to data
that has already been downloaded. For example:
records1, _ := batch.Fetch()
records2, _ := batch.WithContext(ctx).Fetch()
will produce the same result in records1 and records2, irrespective of the newly provided ctx. Context worth noting are:
-WithArrowBatchesTimestampOption
-WithHigherPrecision
-WithArrowBatchesUtf8Validation
described in more detail later.
Fetch():
Returns the underlying records as *[]arrow.Record. When this function is called, the ArrowBatch checks whether
the underlying data has already been loaded, and downloads it if not.
Limitations:
1. For some queries Snowflake may decide to return data in JSON format (examples: `SHOW PARAMETERS` or `ls @stage`). You cannot use JSON with Arrow batches context.
2. Snowflake handles timestamps in a range which is broader than available space in Arrow timestamp type. Because of that special treatment should be used (see below).
3. When using numbers, Snowflake chooses the smallest type that covers all values in a batch. So even when your column is NUMBER(38, 0), if all values are 8bits, array.Int8 is used.
How to handle timestamps in Arrow batches:
Snowflake returns timestamps natively (from backend to driver) in multiple formats.
The Arrow timestamp is an 8-byte data type, which is insufficient to handle the larger date and time ranges used by Snowflake.
Also, Snowflake supports 0-9 (nanosecond) digit precision for seconds, while Arrow supports only 3 (millisecond), 6 (microsecond), an 9 (nanosecond) precision.
Consequently, Snowflake uses a custom timestamp format in Arrow, which differs on timestamp type and precision.
If you want to use timestamps in Arrow batches, you have two options:
1. The Go driver can reduce timestamp struct into simple Arrow Timestamp, if you set `WithArrowBatchesTimestampOption` to nanosecond, microsecond, millisecond or second.
For nanosecond, some timestamp values might not fit into Arrow timestamp. E.g after year 2262 or before 1677.
2. You can use native Snowflake values. In that case you will receive complex structs as described above. To transform Snowflake values into the Golang time.Time struct you can use `ArrowSnowflakeTimestampToTime`.
To enable this feature, you must use `WithArrowBatchesTimestampOption` context with value set to`UseOriginalTimestamp`.
How to handle invalid UTF-8 characters in Arrow batches:
Snowflake previously allowed users to upload data with invalid UTF-8 characters. Consequently, Arrow records containing string columns in Snowflake could include these invalid UTF-8 characters.
However, according to the Arrow specifications (https://arrow.apache.org/docs/cpp/api/datatype.html
and https://github.com/apache/arrow/blob/a03d957b5b8d0425f9d5b6c98b6ee1efa56a1248/go/arrow/datatype.go#L73-L74),
Arrow string columns should only contain UTF-8 characters.
To address this issue and prevent potential downstream disruptions, the context WithArrowBatchesUtf8Validation, is introduced.
When enabled, this feature iterates through all values in string columns, identifying and replacing any invalid characters with `�`.
This ensures that Arrow records conform to the UTF-8 standards, preventing validation failures in downstream services like the Rust Arrow library that impose strict validation checks.
How to handle higher precision in Arrow batches:
To preserve BigDecimal values within Arrow batches, use WithHigherPrecision.
This offers two main benefits: it helps avoid precision loss and defers the conversion to upstream services.
Alternatively, without this setting, all non-zero scale numbers will be converted to float64, potentially resulting in loss of precision.
Zero-scale numbers (DECIMAL256, DECIMAL128) will be converted to int64, which could lead to overflow.
WHen using NUMBERs with non zero scale, the value is returned as an integer type and a scale is provided in record metadata.
Example. When we have a 123.45 value that comes from NUMBER(9, 4), it will be represented as 1234500 with scale equal to 4. It is a client responsibility to interpret it correctly.
Also - see limitations section above.
# Binding Parameters
Binding allows a SQL statement to use a value that is stored in a Golang variable.
Without binding, a SQL statement specifies values by specifying literals inside the statement.
For example, the following statement uses the literal value “42“ in an UPDATE statement:
_, err = db.Exec("UPDATE table1 SET integer_column = 42 WHERE ID = 1000")
With binding, you can execute a SQL statement that uses a value that is inside a variable. For example:
var my_integer_variable int = 42
_, err = db.Exec("UPDATE table1 SET integer_column = ? WHERE ID = 1000", my_integer_variable)
The “?“ inside the “VALUES“ clause specifies that the SQL statement uses the value from a variable.
Binding data that involves time zones can require special handling. For details, see the section
titled "Timestamps with Time Zones".
Version 1.6.23 (and later) of the driver takes advantage of sql.Null types which enables the proper handling of null parameters inside function calls, i.e.:
rows, err := db.Query("SELECT * FROM TABLE(SOMEFUNCTION(?))", sql.NullBool{})
The timestamp nullability had to be achieved by wrapping the sql.NullTime type as the Snowflake provides several date and time types
which are mapped to single Go time.Time type:
rows, err := db.Query("SELECT * FROM TABLE(SOMEFUNCTION(?))", sf.TypedNullTime{sql.NullTime{}, sf.TimestampLTZType})
# Binding Parameters to Array Variables
Version 1.3.9 (and later) of the Go Snowflake Driver supports the ability to bind an array variable to a parameter in a SQL
INSERT statement. You can use this technique to insert multiple rows in a single batch.
As an example, the following code inserts rows into a table that contains integer, float, boolean, and string columns. The example
binds arrays to the parameters in the INSERT statement.
// Create a table containing an integer, float, boolean, and string column.
_, err = db.Exec("create or replace table my_table(c1 int, c2 float, c3 boolean, c4 string)")
...
// Define the arrays containing the data to insert.
intArray := []int{1, 2, 3}
fltArray := []float64{0.1, 2.34, 5.678}
boolArray := []bool{true, false, true}
strArray := []string{"test1", "test2", "test3"}
...
// Insert the data from the arrays and wrap in an Array() function into the table.
_, err = db.Exec("insert into my_table values (?, ?, ?, ?)", Array(&intArray), Array(&fltArray), Array(&boolArray), Array(&strArray))
If the array contains SQL NULL values, use slice []interface{}, which allows Golang nil values.
This feature is available in version 1.6.12 (and later) of the driver. For example,
// Define the arrays containing the data to insert.
strArray := make([]interface{}, 3)
strArray[0] = "test1"
strArray[1] = "test2"
strArray[2] = nil // This line is optional as nil is the default value.
...
// Create a table and insert the data from the array as shown above.
_, err = db.Exec("create or replace table my_table(c1 string)")
_, err = db.Exec("insert into my_table values (?)", Array(&strArray))
...
// Use sql.NullString to fetch the string column that contains NULL values.
var s sql.NullString
rows, _ := db.Query("select * from my_table")
for rows.Next() {
err := rows.Scan(&s)
if err != nil {
log.Fatalf("Failed to scan. err: %v", err)
}
if s.Valid {
fmt.Println("Retrieved value:", s.String)
} else {
fmt.Println("Retrieved value: NULL")
}
}
For slices []interface{} containing time.Time values, a binding parameter flag is required for the preceding array variable in the Array() function.
This feature is available in version 1.6.13 (and later) of the driver. For example,
_, err = db.Exec("create or replace table my_table(c1 timestamp_ntz, c2 timestamp_ltz)")
_, err = db.Exec("insert into my_table values (?,?)", Array(&ntzArray, sf.TimestampNTZType), Array(<zArray, sf.TimestampLTZType))
Note: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see
Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html).
# Batch Inserts and Binding Parameters
When you use array binding to insert a large number of values, the driver can
improve performance by streaming the data (without creating files on the local
machine) to a temporary stage for ingestion. The driver automatically does this
when the number of values exceeds a threshold (no changes are needed to user code).
In order for the driver to send the data to a temporary stage, the user must have the following privilege on the schema:
CREATE STAGE
If the user does not have this privilege, the driver falls back to sending the data with the query to the Snowflake database.
In addition, the current database and schema for the session must be set. If these are not set,
the CREATE TEMPORARY STAGE command executed by the driver can fail with the following error:
CREATE TEMPORARY STAGE SYSTEM$BIND file_format=(type=csv field_optionally_enclosed_by='"')
Cannot perform CREATE STAGE. This session does not have a current schema. Call 'USE SCHEMA', or use a qualified name.
For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command),
see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html).
# Binding a Parameter to a Time Type
Go's database/sql package supports the ability to bind a parameter in a SQL statement to a time.Time variable.
However, when the client binds data to send to the server, the driver cannot determine the correct Snowflake date/timestamp data
type to associate with the binding parameter. For example:
dbt.mustExec("CREATE OR REPLACE TABLE tztest (id int, ntz, timestamp_ntz, ltz timestamp_ltz)")
// ...
stmt, err :=dbt.db.Prepare("INSERT INTO tztest(id,ntz,ltz) VALUES(1, ?, ?)")
// ...
tmValue time.Now()
// ... Is tmValue a TIMESTAMP_NTZ or TIMESTAMP_LTZ?
_, err = stmt.Exec(tmValue, tmValue)
To resolve this issue, a binding parameter flag is introduced that associates
any subsequent time.Time type to the DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ
or BINARY data type. The above example could be rewritten as follows:
import (
sf "github.com/snowflakedb/gosnowflake"
)
dbt.mustExec("CREATE OR REPLACE TABLE tztest (id int, ntz, timestamp_ntz, ltz timestamp_ltz)")
// ...
stmt, err :=dbt.db.Prepare("INSERT INTO tztest(id,ntz,ltz) VALUES(1, ?, ?)")
// ...
tmValue time.Now()
// ...
_, err = stmt.Exec(sf.DataTypeTimestampNtz, tmValue, sf.DataTypeTimestampLtz, tmValue)
# Timestamps with Time Zones
The driver fetches TIMESTAMP_TZ (timestamp with time zone) data using the
offset-based Location types, which represent a collection of time offsets in
use in a geographical area, such as CET (Central European Time) or UTC
(Coordinated Universal Time). The offset-based Location data is generated and
cached when a Go Snowflake Driver application starts, and if the given offset
is not in the cache, it is generated dynamically.
Currently, Snowflake does not support the name-based Location types (e.g. "America/Los_Angeles").
For more information about Location types, see the Go documentation for https://golang.org/pkg/time/#Location.
# Binary Data
Internally, this feature leverages the []byte data type. As a result, BINARY
data cannot be bound without the binding parameter flag. In the following
example, sf is an alias for the gosnowflake package:
var b = []byte{0x01, 0x02, 0x03}
_, err = stmt.Exec(sf.DataTypeBinary, b)
# Maximum Number of Result Set Chunk Downloader
The driver directly downloads a result set from the cloud storage if the size is large. It is
required to shift workloads from the Snowflake database to the clients for scale. The download takes place by goroutine
named "Chunk Downloader" asynchronously so that the driver can fetch the next result set while the application can
consume the current result set.
The application may change the number of result set chunk downloader if required. Note this does not help reduce
memory footprint by itself. Consider Custom JSON Decoder.
import (
sf "github.com/snowflakedb/gosnowflake"
)
sf.MaxChunkDownloadWorkers = 2
Custom JSON Decoder for Parsing Result Set (Experimental)
The application may have the driver use a custom JSON decoder that incrementally parses the result set as follows.
import (
sf "github.com/snowflakedb/gosnowflake"
)
sf.CustomJSONDecoderEnabled = true
...
This option will reduce the memory footprint to half or even quarter, but it can significantly degrade the
performance depending on the environment. The test cases running on Travis Ubuntu box show five times less memory
footprint while four times slower. Be cautious when using the option.
# JWT authentication
The Go Snowflake Driver supports JWT (JSON Web Token) authentication.
To enable this feature, construct the DSN with fields "authenticator=SNOWFLAKE_JWT&privateKey=<your_private_key>",
or using a Config structure specifying:
config := &Config{
...
Authenticator: AuthTypeJwt,
PrivateKey: "<your_private_key_struct in *rsa.PrivateKey type>",
}
The <your_private_key> should be a base64 URL encoded PKCS8 rsa private key string. One way to encode a byte slice to URL
base 64 URL format is through the base64.URLEncoding.EncodeToString() function.
On the server side, you can alter the public key with the SQL command:
ALTER USER <your_user_name> SET RSA_PUBLIC_KEY='<your_public_key>';
The <your_public_key> should be a base64 Standard encoded PKI public key string. One way to encode a byte slice to base
64 Standard format is through the base64.StdEncoding.EncodeToString() function.
To generate the valid key pair, you can execute the following commands in the shell:
# generate 2048-bit pkcs8 encoded RSA private key
openssl genpkey -algorithm RSA \
-pkeyopt rsa_keygen_bits:2048 \
-pkeyopt rsa_keygen_pubexp:65537 | \
openssl pkcs8 -topk8 -outform der > rsa-2048-private-key.p8
# extract 2048-bit PKI encoded RSA public key from the private key
openssl pkey -pubout -inform der -outform der \
-in rsa-2048-private-key.p8 \
-out rsa-2048-public-key.spki
Note: As of February 2020, Golang's official library does not support passcode-encrypted PKCS8 private key.
For security purposes, Snowflake highly recommends that you store the passcode-encrypted private key on the disk and
decrypt the key in your application using a library you trust.
JWT tokens are recreated on each retry and they are valid (`exp` claim) for `jwtTimeout` seconds.
Each retry timeout is configured by `jwtClientTimeout`.
Retries are limited by total time of `loginTimeout`.
# External browser authentication
The driver allows to authenticate using the external browser.
When a connection is created, the driver will open the browser window and ask the user to sign in.
To enable this feature, construct the DSN with field "authenticator=EXTERNALBROWSER" or using a Config structure with
following Authenticator specified:
config := &Config{
...
Authenticator: AuthTypeExternalBrowser,
}
The external browser authentication implements timeout mechanism. This prevents the driver from hanging interminably when
browser window was closed, or not responding.
Timeout defaults to 120s and can be changed through setting DSN field "externalBrowserTimeout=240" (time in seconds)
or using a Config structure with following ExternalBrowserTimeout specified:
config := &Config{
ExternalBrowserTimeout: 240 * time.Second, // Requires time.Duration
}
# Executing Multiple Statements in One Call