-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathevaluation.py
52 lines (40 loc) · 1.79 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python
__author__ = "solivr"
__license__ = "GPL"
import os
from glob import glob
import click
from tf_crnn.callbacks import CustomLoaderCallback, FOLDER_SAVED_MODEL
from tf_crnn.config import Params, CONST
from tf_crnn.data_handler import dataset_generator
from tf_crnn.preprocessing import preprocess_csv
from tf_crnn.model import get_model_train
@click.command()
@click.option('--csv_filename')
@click.option('--model_dir')
def evaluation(csv_filename: str,
model_dir: str):
config_filename = os.path.join(model_dir, 'config.json')
parameters = Params.from_json_file(config_filename)
saving_dir = os.path.join(parameters.output_model_dir, FOLDER_SAVED_MODEL)
# Callback for model weights loading
last_time_stamp = max([int(p.split(os.path.sep)[-1].split('-')[0])
for p in glob(os.path.join(saving_dir, '*'))])
loading_dir = os.path.join(saving_dir, str(last_time_stamp))
ld_callback = CustomLoaderCallback(loading_dir)
# Preprocess csv data
csv_evaluation_file = os.path.join(parameters.output_model_dir, CONST.PREPROCESSING_FOLDER, 'evaluation_data.csv')
n_samples = preprocess_csv(csv_filename,
parameters,
csv_evaluation_file)
dataset_evaluation = dataset_generator([csv_evaluation_file],
parameters,
batch_size=parameters.eval_batch_size,
num_epochs=1)
# get model and evaluation
model = get_model_train(parameters)
eval_output = model.evaluate(dataset_evaluation,
callbacks=[ld_callback])
print('-- Metrics: ', eval_output)
if __name__ == '__main__':
evaluation()