-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
182 lines (156 loc) · 6.42 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import sqlite3
import cv2
import os
from flask import Flask,request,render_template,redirect,session,url_for
from datetime import date
from datetime import datetime
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import joblib
# import db
#### Defining Flask App
app = Flask(__name__)
#### Saving Date today in 2 different formats
datetoday = date.today().strftime("%m_%d_%y")
datetoday2 = date.today().strftime("%d-%B-%Y")
#### Initializing VideoCapture object to access WebCam
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
try:
cap = cv2.VideoCapture(1)
except:
cap = cv2.VideoCapture(0)
#### If these directories don't exist, create them
if not os.path.isdir('Attendance'):
os.makedirs('Attendance')
if not os.path.isdir('static'):
os.makedirs('static')
if not os.path.isdir('static/faces'):
os.makedirs('static/faces')
if f'Attendance-{datetoday}.csv' not in os.listdir('Attendance'):
with open(f'Attendance/Attendance-{datetoday}.csv','w') as f:
f.write('Name,Roll,Time')
#### get a number of total registered users
def totalreg():
return len(os.listdir('static/faces'))
#### extract the face from an image
def extract_faces(img):
if img!=[]:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face_points = face_detector.detectMultiScale(gray, 1.3, 5)
return face_points
else:
return []
#### Identify face using ML model
def identify_face(facearray):
model = joblib.load('static/face_recognition_model.pkl')
return model.predict(facearray)
#### A function which trains the model on all the faces available in faces folder
def train_model():
faces = []
labels = []
userlist = os.listdir('static/faces')
for user in userlist:
for imgname in os.listdir(f'static/faces/{user}'):
img = cv2.imread(f'static/faces/{user}/{imgname}')
resized_face = cv2.resize(img, (50, 50))
faces.append(resized_face.ravel())
labels.append(user)
faces = np.array(faces)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(faces,labels)
joblib.dump(knn,'static/face_recognition_model.pkl')
#### Extract info from today's attendance file in attendance folder
def extract_attendance():
df = pd.read_csv(f'Attendance/Attendance-{datetoday}.csv')
names = df['Name']
rolls = df['Roll']
times = df['Time']
l = len(df)
return names,rolls,times,l
#### Add Attendance of a specific user
def add_attendance(name):
username = name.split('_')[0]
userid = name.split('_')[1]
current_time = datetime.now().strftime("%H:%M:%S")
df = pd.read_csv(f'Attendance/Attendance-{datetoday}.csv')
if str(userid) not in list(df['Roll']):
with open(f'Attendance/Attendance-{datetoday}.csv','a') as f:
f.write(f'\n{username},{userid},{current_time}')
################## ROUTING FUNCTIONS ##############################
#### Our main page
@app.route('/')
def index():
names,rolls,times,l = extract_attendance()
return render_template('index.html',names=names,rolls=rolls,times=times,l=l,totalreg=totalreg(),datetoday2=datetoday2)
#### This function will run when we click on Take Attendance Button
@app.route('/start',methods=['GET'])
def start():
if 'face_recognition_model.pkl' not in os.listdir('static'):
return render_template('index.html',totalreg=totalreg(),datetoday2=datetoday2,mess='There is no trained model in the static folder. Please add a new face to continue.')
cap = cv2.VideoCapture(0)
ret = True
while True:
# Read a frame from the camera
ret, frame = cap.read()
# Convert the frame to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect faces in the grayscale frame
faces = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
# Draw rectangles around the detected faces
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
face = cv2.resize(frame[y:y+h,x:x+w], (50, 50))
identified_person = identify_face(face.reshape(1,-1))[0]
add_attendance(identified_person)
cv2.putText(frame,f'{identified_person}',(x + 6, y - 6),cv2.FONT_HERSHEY_SIMPLEX,1,(255, 0, 20),2)
# img, name, , , 1, (255, 255, 255), 2
# Display the resulting frame
cv2.imshow('Attendance Check', frame)
cv2.putText(frame,'hello',(30,30),cv2.FONT_HERSHEY_COMPLEX,2,(255, 255, 255))
# Wait for the user to press 'q' to quit
if cv2.waitKey(1)==27 & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
names,rolls,times,l = extract_attendance()
return render_template('navbar_logout.html',names=names,rolls=rolls,times=times,l=l,totalreg=totalreg(),datetoday2=datetoday2)
#### This function will run when we add a new user
@app.route('/add',methods=['GET','POST'])
def add():
newusername = request.form['newusername']
newuserid = request.form['newuserid']
userimagefolder = 'static/faces/'+newusername+'_'+str(newuserid)
if not os.path.isdir(userimagefolder):
os.makedirs(userimagefolder)
cap = cv2.VideoCapture(0)
i,j = 0,0
while 1:
_,frame = cap.read()
faces = extract_faces(frame)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x, y), (x+w, y+h), (255, 0, 20), 2)
cv2.putText(frame,f'Images Captured: {i}/50',(30,30),cv2.FONT_HERSHEY_SIMPLEX,1,(255, 0, 20),2,cv2.LINE_AA)
if j%10==0:
name = newusername+'_'+str(i)+'.jpg'
cv2.imwrite(userimagefolder+'/'+name,frame[y:y+h,x:x+w])
i+=1
j+=1
if j==500:
break
cv2.imshow('Adding new User',frame)
if cv2.waitKey(1)==27:
break
cap.release()
cv2.destroyAllWindows()
print('Training Model')
train_model()
names,rolls,times,l = extract_attendance()
if totalreg() > 0 :
return redirect(url_for('index'))
else:
return redirect(url_for('index.html',names=names,rolls=rolls,times=times,l=l,totalreg=totalreg(),datetoday2=datetoday2))
# return render_template('index.html',names=names,rolls=rolls,times=times,l=l,totalreg=totalreg(),datetoday2=datetoday2)
#### Our main function which runs the Flask App
if __name__ == '__main__':
app.run(debug=True,port=1000)