forked from gorgonia/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_cmp.go
321 lines (305 loc) · 9.38 KB
/
api_cmp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
package tensor
import "github.com/pkg/errors"
// public API for comparison ops
// Lt performs a elementwise less than comparison (a < b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Lt(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var lter Lter
var ok bool
switch at := a.(type) {
case Tensor:
lter, ok = at.Engine().(Lter)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if lter, ok = bt.Engine().(Lter); !ok {
return nil, errors.Errorf("Neither operands have engines that support Lt")
}
}
return lter.Lt(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Lt")
}
return lter.LtScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Lt")
}
return lter.LtScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if lter, ok = bt.Engine().(Lter); !ok {
return nil, errors.Errorf("Engine does not support Lt")
}
return lter.LtScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Lt on %T and %T", a, b)
}
}
}
// Gt performs a elementwise greater than comparison (a > b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Gt(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var gter Gter
var ok bool
switch at := a.(type) {
case Tensor:
gter, ok = at.Engine().(Gter)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if gter, ok = bt.Engine().(Gter); !ok {
return nil, errors.Errorf("Neither operands have engines that support Gt")
}
}
return gter.Gt(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Gt")
}
return gter.GtScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Gt")
}
return gter.GtScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if gter, ok = bt.Engine().(Gter); !ok {
return nil, errors.Errorf("Engine does not support Gt")
}
return gter.GtScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Gt on %T and %T", a, b)
}
}
}
// Lte performs a elementwise less than eq comparison (a <= b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Lte(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var lteer Lteer
var ok bool
switch at := a.(type) {
case Tensor:
lteer, ok = at.Engine().(Lteer)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if lteer, ok = bt.Engine().(Lteer); !ok {
return nil, errors.Errorf("Neither operands have engines that support Lte")
}
}
return lteer.Lte(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Lte")
}
return lteer.LteScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Lte")
}
return lteer.LteScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if lteer, ok = bt.Engine().(Lteer); !ok {
return nil, errors.Errorf("Engine does not support Lte")
}
return lteer.LteScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Lte on %T and %T", a, b)
}
}
}
// Gte performs a elementwise greater than eq comparison (a >= b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Gte(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var gteer Gteer
var ok bool
switch at := a.(type) {
case Tensor:
gteer, ok = at.Engine().(Gteer)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if gteer, ok = bt.Engine().(Gteer); !ok {
return nil, errors.Errorf("Neither operands have engines that support Gte")
}
}
return gteer.Gte(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Gte")
}
return gteer.GteScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Gte")
}
return gteer.GteScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if gteer, ok = bt.Engine().(Gteer); !ok {
return nil, errors.Errorf("Engine does not support Gte")
}
return gteer.GteScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Gte on %T and %T", a, b)
}
}
}
// ElEq performs a elementwise equality comparison (a == b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func ElEq(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var eleqer ElEqer
var ok bool
switch at := a.(type) {
case Tensor:
eleqer, ok = at.Engine().(ElEqer)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Neither operands have engines that support ElEq")
}
}
return eleqer.ElEq(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.EqScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.EqScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.EqScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform ElEq on %T and %T", a, b)
}
}
}
// ElNe performs a elementwise equality comparison (a != b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func ElNe(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var eleqer ElEqer
var ok bool
switch at := a.(type) {
case Tensor:
eleqer, ok = at.Engine().(ElEqer)
switch bt := b.(type) {
case Tensor:
if !ok {
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Neither operands have engines that support ElEq")
}
}
return eleqer.ElNe(at, bt, opts...)
default:
if !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.NeScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.NeScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform ElEq on %T and %T", a, b)
}
}
}