forked from gorgonia/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconsopt.go
257 lines (235 loc) · 6.27 KB
/
consopt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
package tensor
import (
"reflect"
"gorgonia.org/tensor/internal/storage"
)
// ConsOpt is a tensor construction option.
type ConsOpt func(Tensor)
// Of is a construction option for a Tensor.
func Of(a Dtype) ConsOpt {
Register(a)
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
tt.t = a
case *CS:
tt.t = a
default:
panic("Unsupported Tensor type")
}
}
return f
}
// WithBacking is a construction option for a Tensor
// Use it as such:
// backing := []float64{1,2,3,4}
// t := New(WithBacking(backing))
// It can be used with other construction options like WithShape
func WithBacking(x interface{}, argMask ...[]bool) ConsOpt {
var mask []bool
if len(argMask) > 0 {
mask = argMask[0]
}
f := func(t Tensor) {
if x == nil {
return
}
switch tt := t.(type) {
case *Dense:
tt.fromSlice(x)
if len(argMask) > 0 {
tt.addMask(mask)
}
default:
panic("Unsupported Tensor type")
}
}
return f
}
// WithMask is a construction option for a Tensor
// Use it as such:
// mask := []bool{true,true,false,false}
// t := New(WithBacking(backing), WithMask(mask))
// It can be used with other construction options like WithShape
// The supplied mask can be any type. If non-boolean, then tensor mask is set to true
// wherever non-zero value is obtained
func WithMask(x interface{}) ConsOpt {
f := func(t Tensor) {
if x == nil {
return
}
switch tt := t.(type) {
case *Dense:
tt.MaskFromSlice(x)
default:
panic("Unsupported Tensor type")
}
}
return f
}
// WithShape is a construction option for a Tensor. It creates the ndarray in the required shape.
func WithShape(dims ...int) ConsOpt {
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
throw := BorrowInts(len(dims))
copy(throw, dims)
tt.setShape(throw...)
case *CS:
if len(dims) != 2 {
panic("Only sparse matrices are supported")
}
throw := BorrowInts(len(dims))
copy(throw, dims)
tt.s = throw
default:
panic("Unsupported Tensor type")
}
}
return f
}
// FromScalar is a construction option for representing a scalar value as a Tensor
func FromScalar(x interface{}, argMask ...[]bool) ConsOpt {
var mask []bool
if len(argMask) > 0 {
mask = argMask[0]
}
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
xT := reflect.TypeOf(x)
sxT := reflect.SliceOf(xT)
xv := reflect.MakeSlice(sxT, 1, 1) // []T
xv0 := xv.Index(0) // xv[0]
xv0.Set(reflect.ValueOf(x))
tt.array.Header.Raw = storage.AsByteSlice(xv.Interface())
tt.t = Dtype{xT}
tt.mask = mask
default:
panic("Unsupported Tensor Type")
}
}
return f
}
// FromMemory is a construction option for creating a *Dense (for now) from memory location. This is a useful
// option for super large tensors that don't fit into memory - the user may need to `mmap` a file the tensor.
//
// Bear in mind that at the current stage of the ConsOpt design, the order of the ConsOpt is important.
// FromMemory requires the *Dense's Dtype be set already.
// This would fail (and panic):
// New(FromMemory(ptr, size), Of(Float64))
// This would not:
// New(Of(Float64), FromMemory(ptr, size))
// This behaviour of requiring the ConsOpts to be in order might be changed in the future.
//
// Memory must be manually managed by the caller.
// Tensors called with this construction option will not be returned to any pool - rather, all references to the pointers will be null'd.
// Use with caution.
//go:nocheckptr
func FromMemory(ptr uintptr, memsize uintptr) ConsOpt {
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
tt.Header.Raw = nil // GC anything if needed
tt.Header.Raw = storage.FromMemory(ptr, memsize)
tt.flag = MakeMemoryFlag(tt.flag, ManuallyManaged)
default:
panic("Unsupported Tensor type")
}
}
return f
}
// WithEngine is a construction option that would cause a Tensor to be linked with an execution engine.
func WithEngine(e Engine) ConsOpt {
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
tt.e = e
if e != nil && !e.AllocAccessible() {
tt.flag = MakeMemoryFlag(tt.flag, NativelyInaccessible)
}
tt.oe = nil
if oe, ok := e.(standardEngine); ok {
tt.oe = oe
}
case *CS:
tt.e = e
if e != nil && !e.AllocAccessible() {
tt.f = MakeMemoryFlag(tt.f, NativelyInaccessible)
}
}
}
return f
}
// AsFortran creates a *Dense with a col-major layout.
// If the optional backing argument is passed, the backing is assumed to be C-order (row major), and
// it will be transposed before being used.
func AsFortran(backing interface{}, argMask ...[]bool) ConsOpt {
var mask []bool
if len(argMask) > 0 {
mask = argMask[0]
}
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
if backing != nil {
// put the data into the tensor, then make a clone tensor to transpose
tt.fromSliceOrArrayer(backing)
// create a temporary tensor, to which the transpose will be done
tmp := NewDense(tt.Dtype(), tt.shape.Clone())
copyArray(tmp.arrPtr(), tt.arrPtr())
tmp.SetMask(mask)
tmp.T()
tmp.Transpose()
// copy the data back to the current tensor
copyArray(tt.arrPtr(), tmp.arrPtr())
tt.SetMask(tmp.Mask())
// cleanup: return the temporary tensor back to the pool
ReturnTensor(tmp)
}
tt.AP.o = MakeDataOrder(tt.AP.o, ColMajor)
if tt.AP.shape != nil {
ReturnInts(tt.AP.strides)
tt.AP.strides = nil
tt.AP.strides = tt.AP.calcStrides()
}
case *CS:
panic("AsFortran is not an available option for Compressed Sparse layouts")
}
}
return f
}
func AsDenseDiag(backing interface{}) ConsOpt {
f := func(t Tensor) {
switch tt := t.(type) {
case *Dense:
if bt, ok := backing.(Tensor); ok {
backing = bt.Data()
}
xT := reflect.TypeOf(backing)
if xT.Kind() != reflect.Slice {
panic("Expected a slice")
}
xV := reflect.ValueOf(backing)
l := xV.Len()
// elT := xT.Elem()
sli := reflect.MakeSlice(xT, l*l, l*l)
shape := Shape{l, l}
strides := shape.CalcStrides()
for i := 0; i < l; i++ {
idx, err := Ltoi(shape, strides, i, i)
if err != nil {
panic(err)
}
at := sli.Index(idx)
xi := xV.Index(i)
at.Set(xi)
}
tt.fromSliceOrArrayer(sli.Interface())
tt.setShape(l, l)
default:
panic("AsDenseDiag is not available as an option for CS")
}
}
return f
}