forked from gorgonia/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdense_norms.go
322 lines (297 loc) · 7.78 KB
/
dense_norms.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
package tensor
import (
"math"
"github.com/chewxy/math32"
"github.com/pkg/errors"
)
func (t *Dense) multiSVDNorm(rowAxis, colAxis int) (retVal *Dense, err error) {
if rowAxis > colAxis {
rowAxis--
}
dims := t.Dims()
if retVal, err = t.RollAxis(colAxis, dims, true); err != nil {
return
}
if retVal, err = retVal.RollAxis(rowAxis, dims, true); err != nil {
return
}
// manual, since SVD only works on matrices. In the future, this needs to be fixed when gonum's lapack works for float32
// TODO: SVDFuture
switch dims {
case 2:
retVal, _, _, err = retVal.SVD(false, false)
case 3:
toStack := make([]*Dense, retVal.Shape()[0])
for i := 0; i < retVal.Shape()[0]; i++ {
var sliced, ithS *Dense
if sliced, err = sliceDense(retVal, ss(i)); err != nil {
return
}
if ithS, _, _, err = sliced.SVD(false, false); err != nil {
return
}
toStack[i] = ithS
}
retVal, err = toStack[0].Stack(0, toStack[1:]...)
return
default:
err = errors.Errorf("multiSVDNorm for dimensions greater than 3")
}
return
}
// Norm returns the p-ordered norm of the *Dense, given the axes.
//
// This implementation is directly adapted from Numpy, which is licenced under a BSD-like licence, and can be found here: https://docs.scipy.org/doc/numpy-1.9.1/license.html
func (t *Dense) Norm(ord NormOrder, axes ...int) (retVal *Dense, err error) {
var ret Tensor
var ok bool
var abs, norm0, normN interface{}
var oneOverOrd interface{}
switch t.t {
case Float64:
abs = math.Abs
norm0 = func(x float64) float64 {
if x != 0 {
return 1
}
return 0
}
normN = func(x float64) float64 {
return math.Pow(math.Abs(x), float64(ord))
}
oneOverOrd = float64(1) / float64(ord)
case Float32:
abs = math32.Abs
norm0 = func(x float32) float32 {
if x != 0 {
return 1
}
return 0
}
normN = func(x float32) float32 {
return math32.Pow(math32.Abs(x), float32(ord))
}
oneOverOrd = float32(1) / float32(ord)
default:
err = errors.Errorf("Norms only works on float types")
return
}
dims := t.Dims()
// simple case
if len(axes) == 0 {
if ord.IsUnordered() || (ord.IsFrobenius() && dims == 2) || (ord == Norm(2) && dims == 1) {
backup := t.AP
ap := makeAP(1)
defer ap.zero()
ap.unlock()
ap.SetShape(t.Size())
ap.lock()
t.AP = ap
if ret, err = Dot(t, t); err != nil { // returns a scalar
err = errors.Wrapf(err, opFail, "Norm-0")
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "Norm-0")
}
switch t.t {
case Float64:
retVal.SetF64(0, math.Sqrt(retVal.GetF64(0)))
case Float32:
retVal.SetF32(0, math32.Sqrt(retVal.GetF32(0)))
}
t.AP = backup
return
}
axes = make([]int, dims)
for i := range axes {
axes[i] = i
}
}
switch len(axes) {
case 1:
cloned := t.Clone().(*Dense)
switch {
case ord.IsUnordered() || ord == Norm(2):
if ret, err = Square(cloned); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "UnorderedNorm-1")
}
if retVal, err = retVal.Sum(axes...); err != nil {
return
}
if ret, err = Sqrt(retVal); err != nil {
return
}
return assertDense(ret)
case ord.IsInf(1):
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "InfNorm-1")
}
return retVal.Max(axes...)
case ord.IsInf(-1):
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "-InfNorm-1")
}
return retVal.Min(axes...)
case ord == Norm(0):
if ret, err = cloned.Apply(norm0); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "Norm-0")
}
return retVal.Sum(axes...)
case ord == Norm(1):
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "Norm-1")
}
return retVal.Sum(axes...)
default:
if ret, err = cloned.Apply(normN); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "Norm-N")
}
if retVal, err = retVal.Sum(axes...); err != nil {
return
}
return retVal.PowScalar(oneOverOrd, true)
}
case 2:
rowAxis := axes[0]
colAxis := axes[1]
// checks
if rowAxis < 0 {
return nil, errors.Errorf("Row Axis %d is < 0", rowAxis)
}
if colAxis < 0 {
return nil, errors.Errorf("Col Axis %d is < 0", colAxis)
}
if rowAxis == colAxis {
return nil, errors.Errorf("Duplicate axes found. Row Axis: %d, Col Axis %d", rowAxis, colAxis)
}
cloned := t.Clone().(*Dense)
switch {
case ord == Norm(2):
// svd norm
if retVal, err = t.multiSVDNorm(rowAxis, colAxis); err != nil {
return nil, errors.Wrapf(err, opFail, "MultiSVDNorm, case 2 with Ord == Norm(2)")
}
dims := retVal.Dims()
return retVal.Max(dims - 1)
case ord == Norm(-2):
// svd norm
if retVal, err = t.multiSVDNorm(rowAxis, colAxis); err != nil {
return nil, errors.Wrapf(err, opFail, "MultiSVDNorm, case 2 with Ord == Norm(-2)")
}
dims := retVal.Dims()
return retVal.Min(dims - 1)
case ord == Norm(1):
if colAxis > rowAxis {
colAxis--
}
if ret, err = cloned.Apply(abs); err != nil {
return nil, errors.Wrapf(err, opFail, "Apply abs in Norm. ord == Norm(1")
}
if retVal, err = assertDense(ret); err != nil {
return nil, errors.Wrapf(err, opFail, "Norm-1, axis=2")
}
if retVal, err = retVal.Sum(rowAxis); err != nil {
return
}
return retVal.Max(colAxis)
case ord == Norm(-1):
if colAxis > rowAxis {
colAxis--
}
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, err = assertDense(ret); err != nil {
return nil, errors.Wrapf(err, opFail, "Norm-(-1), axis=2")
}
if retVal, err = retVal.Sum(rowAxis); err != nil {
return
}
return retVal.Min(colAxis)
case ord == Norm(0):
return nil, errors.Errorf("Norm of order 0 undefined for matrices")
case ord.IsInf(1):
if rowAxis > colAxis {
rowAxis--
}
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, err = assertDense(ret); err != nil {
return nil, errors.Wrapf(err, opFail, "InfNorm, axis=2")
}
if retVal, err = retVal.Sum(colAxis); err != nil {
return nil, errors.Wrapf(err, "Sum in infNorm")
}
return retVal.Max(rowAxis)
case ord.IsInf(-1):
if rowAxis > colAxis {
rowAxis--
}
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, err = assertDense(ret); err != nil {
return nil, errors.Wrapf(err, opFail, "-InfNorm, axis=2")
}
if retVal, err = retVal.Sum(colAxis); err != nil {
return nil, errors.Wrapf(err, opFail, "Sum with InfNorm")
}
return retVal.Min(rowAxis)
case ord.IsUnordered() || ord.IsFrobenius():
if ret, err = cloned.Apply(abs); err != nil {
return
}
if retVal, ok = ret.(*Dense); !ok {
return nil, errors.Errorf(opFail, "Frobenius Norm, axis = 2")
}
if ret, err = Square(retVal); err != nil {
return
}
if retVal, err = assertDense(ret); err != nil {
return nil, errors.Wrapf(err, opFail, "Norm-0, axis=2")
}
if retVal, err = retVal.Sum(axes...); err != nil {
return
}
if ret, err = Sqrt(retVal); err != nil {
return
}
return assertDense(ret)
case ord.IsNuclear():
// svd norm
if retVal, err = t.multiSVDNorm(rowAxis, colAxis); err != nil {
return
}
return retVal.Sum(len(t.Shape()) - 1)
case ord == Norm(0):
err = errors.Errorf("Norm order 0 undefined for matrices")
return
default:
return nil, errors.Errorf("Not yet implemented: Norm for Axes %v, ord %v", axes, ord)
}
default:
err = errors.Errorf(dimMismatch, 2, len(axes))
return
}
panic("Unreachable")
}