-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsecp256k1.cpp
305 lines (240 loc) · 7.56 KB
/
secp256k1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include "secp256k1.h"
#include "blockmath.h"
#include <cassert>
#include <stdexcept>
#include <iostream>
using std::cout;
using std::endl;
// API functions
bool operator<(const secp256k1_scalar &a, const secp256k1_scalar &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t)) == -1;
}
bool operator>(const secp256k1_scalar &a, const secp256k1_scalar &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t)) == 1;
}
bool operator==(const secp256k1_scalar &a, const secp256k1_scalar &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t)) == 0;
}
bool operator==(const secp256k1_scalar &a, const secp256k1_mult_result &b)
{
for(int i = 0; i < 8; i++)
{
if (b.d[i] > 0) return false;
}
return blockwise_cmp(a.d, b.d + 8, sizeof(secp256k1_scalar)/sizeof(uint32_t)) == 0;
}
bool operator==(const secp256k1_mult_result &a, const secp256k1_scalar &b)
{
return b == a;
}
bool operator<(const secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t)) == -1;
}
bool operator<=(const secp256k1_scalar &a, const secp256k1_scalar &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t)) < 1;
}
bool operator>=(const secp256k1_scalar &a, const secp256k1_scalar &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t)) > -1;
}
bool operator<=(const secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t)) < 1;
}
bool operator>=(const secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t)) > -1;
}
bool operator>(const secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t)) == 1;
}
bool operator==(const secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
return blockwise_cmp(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t)) == 0;
}
void operator-=(secp256k1_scalar &a, const secp256k1_scalar &b)
{
blockwise_sub(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t));
}
void operator-=(secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
blockwise_sub(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t));
}
void operator+=(secp256k1_scalar &a, const secp256k1_scalar &b)
{
blockwise_add(a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t));
}
void operator+=(secp256k1_mult_result &a, const secp256k1_mult_result &b)
{
blockwise_add(a.d, b.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t));
}
void operator<<=(secp256k1_scalar &a, uint32_t k)
{
blockwise_shl(a.d, k, sizeof(secp256k1_scalar)/sizeof(uint32_t));
}
void operator<<=(secp256k1_mult_result &a, uint32_t k)
{
blockwise_shl(a.d, k, sizeof(secp256k1_mult_result)/sizeof(uint32_t));
}
void operator>>=(secp256k1_scalar &a, uint32_t k)
{
blockwise_shr(a.d, k, sizeof(secp256k1_scalar)/sizeof(uint32_t));
}
void operator>>=(secp256k1_mult_result &a, uint32_t k)
{
blockwise_shr(a.d, k, sizeof(secp256k1_mult_result)/sizeof(uint32_t));
}
int lzcount(const secp256k1_scalar &a)
{
return blockwise_lzcount(a.d, sizeof(secp256k1_scalar)/sizeof(uint32_t));
}
int lzcount(const secp256k1_mult_result &a)
{
return blockwise_lzcount(a.d, sizeof(secp256k1_mult_result)/sizeof(uint32_t));
}
secp256k1_mult_result mult(const secp256k1_scalar &a, const secp256k1_scalar &b)
{
secp256k1_mult_result res = secp256k1_mult_result();
blockwise_mult(res.d, a.d, b.d, sizeof(secp256k1_scalar)/sizeof(uint32_t));
return res;
}
secp256k1_mult_result padto512(const secp256k1_scalar &a)
{
secp256k1_mult_result res = secp256k1_mult_result();
for(int i = 0; i < 8; i++)
{
res.d[i] = 0;
}
for(int i = 0; i < 8; i++)
{
res.d[8+i] = a.d[i];
}
return res;
}
secp256k1_scalar shrinkto256(const secp256k1_mult_result &a)
{
secp256k1_scalar res = secp256k1_scalar();
for(int i = 0; i < 8; i++)
{
res.d[i] = a.d[8+i];
}
return res;
}
secp256k1_mult_result mod(const secp256k1_mult_result &a, const secp256k1_mult_result &m)
{
secp256k1_mult_result mod = m;
secp256k1_mult_result last_mod = mod;
secp256k1_mult_result tmp = a;
//bool mod_is_smaller = mod_lz > a_lz || mod < a;
while (true) {
int a_lz = lzcount(tmp);
int mod_lz = lzcount(last_mod);
int diff = mod_lz - a_lz;
if (tmp < mod) {
break;
}
// if last_mod is smaller than tmp
if (diff > 0) {
// make last_mod bigger, but never bigger than tmp (as mod result would be negative)
last_mod <<= (diff - 1);
tmp -= last_mod;
// if last_mod is larger than tmp
} else if (diff < 0) {
// make last_mod smaller, and never too small
// potential risk here is that if -diff = 512, then this is a shift of 513 bits (which is illegal)
// could only happen if mod is 0
last_mod >>= (-diff + 1);
tmp -= last_mod;
// if diff == 0, and tmp >= mod
} else {
if (last_mod <= tmp) {
tmp -= last_mod;
} else {
// last_mod > tmp and diff == 0
// make last_mod smaller than tmp, then subtract
last_mod >>= 1;
tmp -= last_mod;
}
}
}
return tmp;
}
// This is not a fast solution
secp256k1_scalar reduce(const secp256k1_mult_result &a)
{
secp256k1_mult_result mod = padto512(SECP256K1_P);
secp256k1_mult_result last_mod = mod;
secp256k1_mult_result tmp = a;
//bool mod_is_smaller = mod_lz > a_lz || mod < a;
while (true) {
int a_lz = lzcount(tmp);
int mod_lz = lzcount(last_mod);
int diff = mod_lz - a_lz;
if (tmp < mod) {
break;
}
// if last_mod is smaller than tmp
if (diff > 0) {
// make last_mod bigger, but never bigger than tmp (as mod result would be negative)
last_mod <<= (diff - 1);
tmp -= last_mod;
// if last_mod is larger than tmp
} else if (diff < 0) {
// make last_mod smaller, and never too small
last_mod >>= (-diff + 1);
tmp -= last_mod;
// if diff == 0, and tmp >= mod
} else {
if (last_mod <= tmp) {
tmp -= last_mod;
} else {
// last_mod > tmp and diff == 0
// make last_mod smaller than tmp, then subtract
last_mod >>= 1;
tmp -= last_mod;
}
}
}
return shrinkto256(tmp);
}
// TODO
secp256k1_scalar fastreduce(const secp256k1_mult_result &a)
{
/*
Use math: a * 2^n + b === ac + b (mod 2^n - c)
Probably: divide number into two parts, at least one has to be 512 bit
*/
// Idea: split number into two halves...
return secp256k1_scalar();
}
// TODO
secp256k1_scalar modinv(const secp256k1_mult_result &a)
{
return secp256k1_scalar();
}
// TODO
secp256k1_point point_add()
{
return secp256k1_point();
}
// TODO
secp256k1_point point_doubling()
{
return secp256k1_point();
}
// TODO
secp256k1_point double_and_add()
{
return secp256k1_point();
}
// TODO
secp256k1_scalar ext_euclidian(const secp256k1_mult_result &a)
{
return secp256k1_scalar();
}