forked from AllAboutAI-YT/easy-local-rag
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocalrag.py
182 lines (151 loc) · 6.45 KB
/
localrag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import ollama
import os
from openai import OpenAI
import argparse
import json
# ANSI escape codes for colors
PINK = "\033[95m"
CYAN = "\033[96m"
YELLOW = "\033[93m"
NEON_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"
# Function to open a file and return its contents as a string
def open_file(filepath):
with open(filepath, "r", encoding="utf-8") as infile:
return infile.read()
# Function to get relevant context from the vault based on user input
def get_relevant_context(rewritten_input, vault_embeddings, vault_content, top_k=3):
if vault_embeddings.nelement() == 0: # Check if the tensor has any elements
return []
# Encode the rewritten input
input_embedding = ollama.embeddings(
model="mxbai-embed-large", prompt=rewritten_input
)["embedding"]
# Compute cosine similarity between the input and vault embeddings
cos_scores = torch.cosine_similarity(
torch.tensor(input_embedding).unsqueeze(0), vault_embeddings
)
# Adjust top_k if it's greater than the number of available scores
top_k = min(top_k, len(cos_scores))
# Sort the scores and get the top-k indices
top_indices = torch.topk(cos_scores, k=top_k)[1].tolist()
# Get the corresponding context from the vault
relevant_context = [vault_content[idx].strip() for idx in top_indices]
return relevant_context
def rewrite_query(user_input_json, conversation_history, ollama_model):
user_input = json.loads(user_input_json)["Query"]
context = "\n".join(
[f"{msg['role']}: {msg['content']}" for msg in conversation_history[-2:]]
)
prompt = f"""Rewrite the following query by incorporating relevant context from the conversation history.
The rewritten query should:
- Preserve the core intent and meaning of the original query
- Expand and clarify the query to make it more specific and informative for retrieving relevant context
- Avoid introducing new topics or queries that deviate from the original query
- DONT EVER ANSWER the Original query, but instead focus on rephrasing and expanding it into a new query
Return ONLY the rewritten query text, without any additional formatting or explanations.
Conversation History:
{context}
Original query: [{user_input}]
Rewritten query:
"""
response = client.chat.completions.create(
model=ollama_model,
messages=[{"role": "system", "content": prompt}],
max_tokens=200,
n=1,
temperature=0.1,
)
rewritten_query = response.choices[0].message.content.strip()
return json.dumps({"Rewritten Query": rewritten_query})
def ollama_chat(
user_input,
system_message,
vault_embeddings,
vault_content,
ollama_model,
conversation_history,
):
conversation_history.append({"role": "user", "content": user_input})
if len(conversation_history) > 1:
query_json = {"Query": user_input, "Rewritten Query": ""}
rewritten_query_json = rewrite_query(
json.dumps(query_json), conversation_history, ollama_model
)
rewritten_query_data = json.loads(rewritten_query_json)
rewritten_query = rewritten_query_data["Rewritten Query"]
print(PINK + "Original Query: " + user_input + RESET_COLOR)
print(PINK + "Rewritten Query: " + rewritten_query + RESET_COLOR)
else:
rewritten_query = user_input
relevant_context = get_relevant_context(
rewritten_query, vault_embeddings, vault_content
)
if relevant_context:
context_str = "\n".join(relevant_context)
print("Context Pulled from Documents: \n\n" + CYAN + context_str + RESET_COLOR)
else:
print(CYAN + "No relevant context found." + RESET_COLOR)
user_input_with_context = user_input
if relevant_context:
user_input_with_context = user_input + "\n\nRelevant Context:\n" + context_str
conversation_history[-1]["content"] = user_input_with_context
messages = [{"role": "system", "content": system_message}, *conversation_history]
response = client.chat.completions.create(
model=ollama_model,
messages=messages,
max_tokens=2000,
)
conversation_history.append(
{"role": "assistant", "content": response.choices[0].message.content}
)
return response.choices[0].message.content
# Parse command-line arguments
print(NEON_GREEN + "Parsing command-line arguments..." + RESET_COLOR)
parser = argparse.ArgumentParser(description="Ollama Chat")
parser.add_argument(
"--model", default="llama3", help="Ollama model to use (default: llama3)"
)
args = parser.parse_args()
# Configuration for the Ollama API client
print(NEON_GREEN + "Initializing Ollama API client..." + RESET_COLOR)
client = OpenAI(base_url="http://localhost:11434/v1", api_key="llama3")
# Load the vault content
print(NEON_GREEN + "Loading vault content..." + RESET_COLOR)
vault_content = []
if os.path.exists("vault.txt"):
with open("vault.txt", "r", encoding="utf-8") as vault_file:
vault_content = vault_file.readlines()
# Generate embeddings for the vault content using Ollama
print(NEON_GREEN + "Generating embeddings for the vault content..." + RESET_COLOR)
vault_embeddings = []
for content in vault_content:
response = ollama.embeddings(model="mxbai-embed-large", prompt=content)
vault_embeddings.append(response["embedding"])
# Convert to tensor and print embeddings
print("Converting embeddings to tensor...")
vault_embeddings_tensor = torch.tensor(vault_embeddings)
print("Embeddings for each line in the vault:")
print(vault_embeddings_tensor)
# Conversation loop
print("Starting conversation loop...")
conversation_history = []
system_message = "You are a helpful assistant that is an expert at extracting the most useful information from a given text. Also bring in extra relevant infromation to the user query from outside the given context."
while True:
user_input = input(
YELLOW
+ "Ask a query about your documents (or type 'quit' to exit): "
+ RESET_COLOR
)
if user_input.lower() == "quit":
break
response = ollama_chat(
user_input,
system_message,
vault_embeddings_tensor,
vault_content,
args.model,
conversation_history,
)
print(NEON_GREEN + "Response: \n\n" + response + RESET_COLOR)