-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
93 lines (83 loc) · 3.49 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
This file was copied from https://github.com/tim-learn/SHOT-plus/code/uda and modified for this project needs.
The license of the file is in: https://github.com/tim-learn/SHOT-plus/blob/master/LICENSE
"""
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import math
import torch.nn.functional as F
import pdb
def Entropy(input_):
bs = input_.size(0)
epsilon = 1e-5
entropy = -input_ * torch.log(input_ + epsilon)
entropy = torch.sum(entropy, dim=1)
return entropy
def grl_hook(coeff):
def fun1(grad):
return -coeff*grad.clone()
return fun1
def CDAN(input_list, ad_net, entropy=None, coeff=None, random_layer=None):
softmax_output = input_list[1].detach()
feature = input_list[0]
if random_layer is None:
op_out = torch.bmm(softmax_output.unsqueeze(2), feature.unsqueeze(1))
ad_out = ad_net(op_out.view(-1, softmax_output.size(1) * feature.size(1)))
else:
random_out = random_layer.forward([feature, softmax_output])
ad_out = ad_net(random_out.view(-1, random_out.size(1)))
batch_size = softmax_output.size(0) // 2
dc_target = torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float().cuda()
if entropy is not None:
entropy.register_hook(grl_hook(coeff))
entropy = 1.0+torch.exp(-entropy)
source_mask = torch.ones_like(entropy)
source_mask[feature.size(0)//2:] = 0
source_weight = entropy*source_mask
target_mask = torch.ones_like(entropy)
target_mask[0:feature.size(0)//2] = 0
target_weight = entropy*target_mask
weight = source_weight / torch.sum(source_weight).detach().item() + \
target_weight / torch.sum(target_weight).detach().item()
return torch.sum(weight.view(-1, 1) * nn.BCELoss(reduction='none')(ad_out, dc_target)) / torch.sum(weight).detach().item()
else:
return nn.BCELoss()(ad_out, dc_target)
def DANN(features, ad_net):
ad_out = ad_net(features)
batch_size = ad_out.size(0) // 2
dc_target = torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float().cuda()
return nn.BCELoss()(ad_out, dc_target)
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True, reduction=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.reduction = reduction
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).sum(dim=1)
if self.reduction:
return loss.mean()
else:
return loss
return loss