-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path07-representation-of-polyhedra.tex
executable file
·223 lines (178 loc) · 10.5 KB
/
07-representation-of-polyhedra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
\documentclass[main]{subfiles}
\begin{document}
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
% Main Topics: extreme rays, recession cones and representation of polyhedra
% Representation of Polyhedra - 12.10.2017
% author: Vanessa Leite
\section{Representation of Polyhedra}
Definition: Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a
polyhedron. $dim(\mathcal{P}) = n - dim(\{A_{i\cdot} \mid A_{i\cdot}x = b_i$, $
\forall x \in \mathcal{P} \})$ (implicitly linearly independent equations).
For $I \subseteq \{1, \dots, m\}$, $F = \{ x \in \mathcal{P} \mid A_{i\cdot}
x = b$, $\forall i \in I \}$ is a face of $\mathcal{P}$.
Extreme case: $F = \emptyset$, $F = P$.\\
Vertices are faces of dimension $0$. Edges are faces of dimension $1$. Facets
are faces of dimension $dim(\mathcal{P})-1$.\\
When $b = 0$, $\mathcal{P}$ is a cone. A cone is \textbf{pointed} if it does
not contain a line.\\
For $\mathcal{P}$ and a point $y \in \mathcal{P}$, $\underbrace{rec}
_{\text{recession}}(y, \mathcal{P}) = \{ d \in \mathbb{R}^n \mid y + \lambda d
\in \mathcal{P}$, $\forall \lambda \geq 0 \}$. If $\mathcal{P}$ is bounded then
$rec(y, \mathcal{P}) = \{ 0 \}$, $\forall y \in \mathcal{P}$. \\
\paragraph{Observation:}
if $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b \}$, then the recession
cone $rec(y, \mathcal{P}) = \{d \in \mathbb{R}^n \mid Ad \leq 0 \}$, $\forall y
\in \mathcal{P}$. Therefore for every point $y \in \mathcal{P} \rightarrow
rec(y, \mathcal{P}) = rec(\mathcal{P})$. In other words, the recession cone is
independent of $y$.
\subparagraph{Proof of observation:}
Take $y \in \mathcal{P}$, $rec(y, \mathcal{P}) = \{d \in \mathbb{R}^n \mid y +
\lambda d \in \mathcal{P}$, $\forall \lambda \geq 0 \}$, now we claim this is
the same as $\{d \in \mathbb{R}^n \mid Ad \leq 0 \} = \mathcal{Q}$.\\
"$Q \subseteq rec(y, \mathcal{P})$": if $d \in \mathcal{Q} \rightarrow Ad \leq
0 \underbrace{\rightarrow}_{\forall y \in \mathcal{P}} A (y + \lambda d) = Ay +
\underbrace{\lambda}_{\geq 0} \underbrace{A d}_{\leq 0} \leq b$. \\
"$rec(y, \mathcal{P}) \subseteq Q$": Suppose it is not true, so, there exists
$i$, such that for $d \in rec(y, \mathcal{P}) \rightarrow A_{i\cdot}d > 0$.
$y+ \lambda d \in \mathcal{P}$, $\forall \lambda \geq 0 \rightarrow A_{i\cdot}
(y + \lambda d) = A_{i\cdot}y + \lambda A_{i\cdot} d \leq b_i \rightarrow
\lambda \leq \frac{b_i - A_{i\cdot}y}{A_{i\cdot}d}$,
which contradicts $\lambda > 0$.
\emph{Remark: For a polyhedron in standard form $P=\{x \in \mathbb{R}^n_+ \mid
Ax = b \}$, $rec(\mathcal{P}) = \{d \in \mathbb{R}^n_+ \mid Ad = 0 \}$. }\\
From lecture 3, we know that if we take a matrix $A \in \mathbb{Z}^{m\times n}$
and a cone $C = \{x \in \mathbb{R}^n \mid Ax \leq 0 \}$. Then $(a) \iff (b)
\iff (c)$:
\begin{itemize}
\item (a) $0$ is an extreme point
\item (b) $C$ is pointed
\item (c) the dimension of all inequalities should be $n$ ($dim(\{A_{i\cdot}
\mid i = 1, \cdots, m \}) = n$).
\end{itemize}
A cone can not have more than one extreme point. In fact, for all $x \in C$ if
$x \neq 0 \rightarrow x = \frac{1}{2}[\frac{1}{2}x + \frac{3}{2}x]$ (there is
no linear combination to represent $x$ (?) - it seems that x can be written as
a linear combination).
\todo[inline]{check above information!}
\paragraph{Definition: Let the cone $C =\{x \in \mathbb{R}^n \mid Ax \leq 0\}$.
$x \in C$, $ x \neq 0$ is called an extreme ray of $C$ if the dimension of all
the tight constraints at this point is $n-1$ ($dim(\{A_{i\cdot} \mid i \in
I(x)) = n-1$)}.\\
For $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b \}$ an extreme ray of
$\mathcal{P}$ is an extreme point of $rec(\mathcal{P})$.
\paragraph{Remark: Extreme rays of $C$ are faces of $C$ with dimension $1$.
From now on, if $A \in Q^{m \times n}$, extreme rays are scaled to be integers
whose $gcd = 1$.}
\begin{figure}[!h]
\label{fig:cone}
\centering
\includegraphics[width=0.5\textwidth]{imgs/cone.png}
\end{figure}
$C = \{x \mid x =\lambda_1 v_1 + \lambda_2 v_2, \lambda_1, \lambda_2 \geq 0 \}$
$v_1$ and $v_2$ are the extreme rays of $C$.\\
Can you give a point $c^T x \geq 0$? If $v_1$ and $v_2$ are $\geq 0$ then yes.
Otherwise, we have a point that is false.
\paragraph{Theorem: Take a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b
\}$ with at least one extreme point.} What happens if $\displaystyle \max_{x
\in \mathcal{P}} c^{T} x = +\infty$? This can happen iff there is an extreme
ray $d \in \mathcal{P}$, such that $c^T d > 0$.
\subparagraph{Proof:}
Suppose $d$ extreme ray of $\mathcal{P}$, $c^T d > 0$. $P \neq \emptyset$. Take
a point $x \in \mathcal{P}$. By definition of extreme rays, $Ad \leq 0$, hence
$x + \lambda d \in \mathcal{P}$, $\forall \lambda \geq 0$.\\
$\rightarrow c^T(x +\lambda d) = c^T x + \lambda c^T d \xrightarrow[\lambda \to
\infty]{} +\infty$.
Conversely, $\displaystyle \max_{x \in \mathcal{P}} c^{T} x = +\infty$, shows
that exists an extreme ray.
\todo[inline]{homework}
Consider now that the dual $\min b^T y$, $st. A^T y = c$, $y \geq 0$ has no
solution. We know that $\min 0^T y$, $st. A^T y = c$, $y \geq 0$ is infeasible.
Consider now the cone problem: $\max c^T x$, $st. Ax \leq 0$. This problem is
either unbounded or infeasible. $0$ is feasible for our problem, so,
$\max c^T x$, $st. Ax \leq 0$ is unbounded. As $\max c^T x$ is unbounded,
$\max c^T x = +\infty$.\\
$\mathcal{P}$ has at least one extreme point, therefore has no lines, and in
particular, $dim(\{A_{i\cdot} \mid i = 1, \dots, m\}) = n$. If $\mathcal{P}$
does not have a line, then the cone does not have a line, i.e,
$rec(\mathcal{P})$ is pointed.
Under this assumption in the cone, prove that exists a recession ray in the
cone such that $c^T d > 0$.
\todo[inline]{homework: Start by taking any point of the polyhedron (check
lecture 03)}
\paragraph{Theorem: Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
with at least one extreme point. Let $\{v^1, \dots, v^k\}$ be all the extreme
points in $\mathcal{P}$ and $\{w^1, \dots, w^r\}$ be all the extreme rays in
$\mathcal{P}$. \\ Then $\mathcal{P} = \mathcal{Q} = \{ \sum_{i =1}^{k}
\lambda_i v^i + \sum_{j=1}^{r} \mu_j w^j \mid \lambda \geq 0$, $\mu \geq 0$,
$\mathtt{1}^T \lambda =1 \}$}
In other words: every point of a bounded polyhedron can be writed as a convex
combination of the vertices and extreme rays of the polyhedron.
\subparagraph{Proof:} "$\mathcal{Q} \subseteq \mathcal{P}$" and "$\mathcal{P} \subseteq \mathcal{Q}$"\\
"$\mathcal{Q} \subseteq \mathcal{P}$"\\
Take an arbitrary point $x \in \mathcal{Q}$. $x = \sum_{i =1}^{k} \lambda_i v^i
+ \sum_{j=1}^{r} \mu_j w^j$, $\lambda \geq 0$, $\mu \geq 0$. We know $A w^j
\leq 0$, $\forall j$, $Av^i \leq b$, $\forall i$.
$\mathcal{P}$ convex $\rightarrow \sum_{i=1}^{k} \lambda_i v^i = y \in
\mathcal{P}$, $\lambda_i \geq 0$, $\mathtt{1}^T \lambda = 1$.
$\rightarrow z = \sum_{j = 1}^{r} \mu_j w^j$ satisfies $Az \leq 0$. $x = y + z$
satisfies $Ax = \underbrace{Ay}_{\leq b} + \underbrace{Az}_{\leq 0} \leq b
\rightarrow x \in \mathcal{P}$.
"$\mathcal{P} \subseteq \mathcal{Q}$"\\
Assume the statement is not true. This implies there exists $z \in \mathcal{P}$
and $z \notin \mathcal{Q}$.
Then, $R = \min \sum_{i = 1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0 \mu_j$, $st.
\sum_{i = 1}^{k} \lambda_i v^i + \sum_{j = 1}^{r} \mu_j w^j = z$, $\lambda_i$,
$\mu_j \geq 0$, $\mathtt{1}^T \lambda = 1$. If $z \notin \mathcal{Q}$, $R$ is
infeasible, so the dual problem is unbounded. The dual of $R$ is
$\max p^T z + q$, $st. p^T v^i + q \leq 0$, $p^T w^j \leq 0$, $\forall i =1,
\dots, k$, $\forall j = 1, \dots, r$.
Which means $p = 0$ and $q = 0$ is feasible $\rightarrow R$ is unbounded.
$\rightarrow \exists (p^*, q^*)$ such that $(p^*)^T z + q^* > 0 \geq (p^*)^T
v^i + q^*, \forall i = 1, \dots, k$, $(p^*)^T w^j \leq 0$, $\forall j = 1,
\dots, r$. \\
$\rightarrow (p^*)^T w^j \leq 0$, $\forall j = 1, \dots, r$, $(p^*)^T v^i <
(p^*)^T z$, $\forall i = 1, \dots, k$.(*)
Consider $\displaystyle \max (p^*)^T x$, $st. Ax \leq b$, which is feasible ($
\mathcal{P} \neq \emptyset$).
Suppose, $\displaystyle \max_{x \in \mathcal{P}} (p^*)^T x = +\infty$, then we
know from previous theorem that exists an extreme ray $j$ such that $(p^*)^T
w^j > 0$, but this contradicts (*).
Suppose, $\displaystyle \max_{x \in \mathcal{P}} (p^*)^T x$ is finite, i.e,
there exists an extreme point $v^i$ , $i \in \{1, \dots, k\}$ attaining the
optimal solution. Since $z \in \mathcal{P}$, then $(p^*)^T v^i \geq (p^*)^T z$,
which contradicts (*).
So, this contradicts that $\exists z \in \mathcal{P}$, $z \notin \mathcal{Q}$.
\subsection{Remarks}
\paragraph{A pointed polyhedron can be written as the convex hull of its
vertices plus the convex hull of its extreme rays ($\mathcal{P} = conv(V) +
cone(E)$), where $V$ are the vertices and $E$ the extreme rays of $\mathcal{P}
$}.
What if $\mathcal{P}$ does contain a line? e.g. $\{x \in \mathbb{R}^2 \mid x_2
\geq 1 \} =
\underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{\text{convex hull of vertices, just one vertex in this case}} + cone (\begin{Bmatrix} 0 \\ 1
\end{Bmatrix}) + cone(\{ \begin{pmatrix} 1 \\ 0
\end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \})$
This idea can be generalized: Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax
\leq b \}$ for $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ be a
polyhedron containing a line.
Let $d = dim(ker(A))$, $L \in \mathbb{Q}^{n \times d}$ be a matrix whose column
vectors form a basis of $ker(A)$, and $Q \in \mathbb{Q}^{n \times n-d}$ be a
matrix st. its columns form a basis for $Im(A^T)$. Recall from linear algebra
that if we get the two basis together we form a basis for the entire space.
$[L | Q]$ forms a basis of $\mathbb{R}^n$ and that $\forall \mu \in \mathbb{R}
^{n-d}\setminus \{0\}$. $AQ\mu \neq 0$.\\
$\mathcal{P} = \{L \lambda + Q \mu \mid \lambda \in \mathbb{R}^d$, $\mu \in
\mathbb{R}^{n-d}$, $Ay \leq b\}$ = this is a Mikowski's sum = $\{L \lambda \mid
\lambda \in \mathbb{R}^d \} + \underbrace{ \{ y \in \mathbb{R}^n \mid y = Q\mu,
\mu \in \mathbb{R}^{n-d}, Ay \leq b \} }_{= \mathcal{P}'}$.
$\mathcal{P}'$ does not contain a line. Let $d \in \mathbb{R}^n$ st $d= Q
\alpha$, $\alpha \in \mathbb{R}^{n-d}$, and $Ad =0$, then, $d=0$, so, indeed,
$\mathcal{P}$ does not contain a line.
\paragraph{Corollary of representation theorem:} Let $\mathcal{P}$ be a
polyhedron, $\mathcal{P} = \{x\in \mathbb{R}^n \mid Ax \leq b \}$. Then, exist
finite sets $V$ and $E$ such that $P = conv(V) + cone(E) + lin(L) = conv(V) +
cone(E, L, -L)$. $lin(L) = \{x \in \mathbb{R}^n \mid x = L \lambda$, $\lambda
\in \mathbb{R}^d \}$.
\subsection{Supplementary Reading - Section 4.8 and 4.9 from [BT97]}
\todo[inline]{update}
\end{document}