-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmore-information.tex
executable file
·128 lines (117 loc) · 6.58 KB
/
more-information.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\documentclass[main]{subfiles}
\begin{document}
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
% Main Topics: barrier functions and central path
% Interior Point Methods - 30.10.2017
% author: Vanessa Leite
\section{Other informations}
\subsection{Revised Simplex Algorithm}
\begin{enumerate}
\item Choose a starting basis $B$ and calculate $A^{-1}_B$.
\item Calculate $\bar{c} = C^T_B A^{-1}_B$.
\item If $\bar{c} \geq 0$, return optimal solution $x^* = (A^{-1}_B b, 0)$.
Otherwise, choose $j \in N$ such that $\bar{c_j} < 0$.
\item Compute $u = A^{-1}_B A_{\cdot j}$.
\item If $u_i \leq 0$ for all $i \in \{1, \dots, m\}$, the problem is unbounded
($-\infty$).
\item Determine $\lambda^* = \min \{ \frac{x_i}{u_i}\} (u_i>0$ and $i \{ 1,
\dots, m\}$. Let $k$ be an index for which $\lambda^*$ is attained.
\item Let $\bar{B} = B\setminus\{k\} \cup \{j\}$.
\item Update $x_i$: $\lambda^*$ if $i=j$, $x_i - \lambda^* u_i$, if $i \in B$,
and $x_i$, else.
\item Let $Q$ be the matrix obtained from elementary column operations which
transforms $A^{-1}_B A_{\bar{B}}$ to $I_{m \times m}$.
\item Update $A^{-1}_{\bar{B}} = Q \times A^{-1}_B$.
\item Set $B = \bar{B}$, go to $2$.
\end{enumerate}
To obtain $Q$ in $9$, observe that $A^{-1}_B A_{\bar{B}} = [e_1, e_2, \dots,
A^{-1}_B A_{\cdot j}, \dots, e_{m-1}, e_m] = [e_1, e_2, \dots, u, \dots,
e_{m-1}, e_m]$, $e_i$ is the $i$-th unit vector. Let $Q$ be the matrix
corresponding to the sequence of ERO which transforms $A6 {-1}_B A_{\bar{B}}$
to $I$. By construction, $Q$ only depends on $u$. It follows that $Q A^{-1}_B
A_{\bar{B}} = I \iff Q A^{-1}_B = A^{-1}_{\bar{B}}$ (update step on 10).
\subsection{Anticycling rules}
For $u,v \in \R^n$, $u <_{lex} v \iff \exists k \in \{0, \dots, n-1\}$ (index)
st $u_1 = v_1, \dots, u_k = v_k, u_{k+1} < v_{k+1}$.\\
$u <_{lex} v \iff u - v <_{lex} 0$\\
For $u <_{lex} 0$ and any $v$ and $\alpha > 0$: $v +\alpha \times u>_{lex} v$.\\
Lexicographic Pivoting rule: replace step 6 on previous algorithm:
\begin{enumerate}
\item Denote by $I$ the index set of all rows $T_{i\cdot}$ st $\bar{A_{ij}} > 0$
and $i>0$.
\item Choose the index $k \in I$ st the vector $\frac{T_{k\cdot}}
{\bar{A_{k,j}}}$ is lexicographically smallest among all $\frac{T_{i\cdot}}
{\bar{A_{ij}}}: i \in I$. $k$ minimizes the ratio $\frac{(A^{-1}_B b)_k}
{ \bar{A_{ij}}} = \frac{x^*_k}{\bar{A_{ij}}}$.
\end{enumerate}
\subsection{Simplex Lexicographic Pivoting rule always terminates}
Basis exchange maintains the property that $T_{i\cdot} >_{lex} 0$. This holds
true for the initial tableu as $A^{-1}_B b \geq 0$ (x is feasible) and due to
the unit matrix. Lets change the basis from $B$ to $B\cup\{j\} \setminus \{k\}$.
Call the new tableu after basis exchange of $T^{new}$. By assumption, $\bar{c_j}
< 0$, $\bar{A_{kj}} > 0$ and by our choice of $k$, $\frac{T_{k\cdot}}
{\bar{A_{kj}}} <_{lex} \frac{T_{i\cdot}}{\bar{A_{ij}}}$, $\forall i \geq 1, i
\neq k$ st $\bar{A_{ij}} >0$. Then:
\begin{enumerate}
\item $T^{new}_{k\cdot} = \frac{T_{k\cdot}}{\bar{A_{kj}}} >_{lex} 0$ as
$\bar{A_{kj}} > 0$.
\item $T^{new}_{i\cdot} = T_{i\cdot} - \frac{\bar{A_{ij}}}{\bar{A_{kj}}}
T_{k\cdot}$, $\forall i \geq 0$, $i \neq k$. We distinguish between:
\subitem if $\bar{A_{ij}} \leq 0, T^{new}_{i\cdot} >_{lex} 0$ as $T_{i\cdot}
>_{lex} 0$, where $T_{k\cdot} >_{lex} 0$.
\subitem For $\bar{A_{ij}} >0$ it holds that $\frac{T_{i\cdot}}{\bar{A_{ij}}}
>_{lex} \frac{T_{k\cdot}}{\bar{A_{kj}}} \iff T_{i\cdot} >_{lex}
\frac{\bar{A_{ij}}}{\bar{A_{kj}}} T_{k\cdot} \iff T_{i\cdot} -
\frac{\bar{A_{ij}}}{\bar{A_{kj}}}
T_{k\cdot} >_{lex} 0 \iff T^{new}_{i\cdot} >_{lex} 0$.
\end{enumerate}
Show $T^{new}_{0\cdot} >_{lex} T_{0\cdot}$ as $\bar{c_j} < 0$:, $T^{new}
_{0\cdot} = T_{0\cdot} - \frac{\bar{C_j}}{\bar{A_{kj}}} T_{k\cdot} >_{lex}
T_{0\cdot}$. It follows that in every basis exchange, the topmost row of the
tableu will increase striclty (lexic.). We can therefore never visit the same
basis twice, as otherwise, we would end up with the same topmost row of $T$, a
contradiction.
\paragraph{Hessian Matrix}
matrix of second order partial derivatives.\\
$\frac{\partial^2 g(x,y)}{\partial x \partial y}$: first derivate in $y$,
then in $x$.\\
PSD matrix: each main diagonal element $>=0$, and $det >=0$, or $z^T M z \geq 0$
($z$ is a vector)\\
$\frac{\partial f}{\partial x}(p) >/< 0$ then $f(x)$ is increasing/decreasing
function at $x=p$. $=0$ we know nothing.\\
$\frac{\partial^2 f}{\partial x}(p) >/< 0$ then $f(x)$ is concave up/
down function at $x=p$. $=0$ we know nothing.\\
first derivative $= 0$ and $\frac{\partial^2 f}{\partial x}(p) >/< 0$ then
$f(x)$ has a local minimum/maximum at $x=p$. $=0$ we know nothing.\\
\paragraph{Graphs}
sum of degrees of all vertices is equal to $2 * |E|$ (undirected),
in other words, sum of degrees of all vertices is always even.\\
planar graph: sum of degrees of all faces is twice the number of edges.\\
sum of entering edges of all vertices = $|E|$ = sum of leaving edges of all
vertices\\
In any undirected graph, number of vertices with odd degree is even\\
For every tree: $|V| - |E| = 1$\\
In a forest, total vertices - total edges = number of trees
\paragraph{Cliques - subgraph complete connected}
Most versions of the clique problem are hard. The clique decision problem is
NP-complete. The problem of finding the maximum clique is both fixed-parameter
intractable and hard to approximate. And, listing all maximal cliques may
require exponential time as there exist graphs with exponentially many maximal
cliques. A maximal clique is a clique to which no more vertices can be added.
For each vertex v that is not part of a maximal clique, there must be another
vertex w that is in the clique and non-adjacent to v, preventing v from being
added to the clique. A maximum clique is a clique that includes the largest
possible number of vertices. Brute force, max clique with k nodes: $O(n^k k^2)$
$n^k$ subgraphs to check and each has $k^2$ edges. k fixed: polynomial, not
fixed: exponentinal, no FPTAS, or $P=NP$.
\paragraph{Graph partition problem}
$G=(V,E)$ with an even number of vertices $n=|V|$, divide $V$ into two subsets
$L$ and $R$ with the same number of vertices satisfying $L\cap R=\emptyset$,
$L\cup R=V$, $|L|=|R|=n/2$, so as to minimize the number of edges across $L$
and $R$ (the number of edges $\{i,j\}$ such that either $i\in L$ and $j\in R$
or $i\in R$ and $j \in L$). IP (quadratic): $\min \sum_{i,j \in E} (x_i(1-x_j)
+(1-x_i)x_j)$ st $\sum_{i \in V} x_i = n/2$, $x_i \in \{0,1\}$. LIP: $\min
\sum_{i,j \in E} y_{ij}$ st $\sum_{i\in V} x_i = n/2$, $x_i - x_j \leq y_{ij}
\forall \{i,j\} in E$, $x_j - x_i \leq y_ij$, $x_i \in \{0,1\} \forall i \in
V$, $y_{ij} \in \{0,1\} \forall \{i,j\} \in E$.
\end{document}