-
Notifications
You must be signed in to change notification settings - Fork 335
/
Copy pathtinyraytracer.cpp
149 lines (130 loc) · 6.07 KB
/
tinyraytracer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include <tuple>
#include <vector>
#include <fstream>
#include <algorithm>
#include <cmath>
struct vec3 {
float x=0, y=0, z=0;
float& operator[](const int i) { return i==0 ? x : (1==i ? y : z); }
const float& operator[](const int i) const { return i==0 ? x : (1==i ? y : z); }
vec3 operator*(const float v) const { return {x*v, y*v, z*v}; }
float operator*(const vec3& v) const { return x*v.x + y*v.y + z*v.z; }
vec3 operator+(const vec3& v) const { return {x+v.x, y+v.y, z+v.z}; }
vec3 operator-(const vec3& v) const { return {x-v.x, y-v.y, z-v.z}; }
vec3 operator-() const { return {-x, -y, -z}; }
float norm() const { return std::sqrt(x*x+y*y+z*z); }
vec3 normalized() const { return (*this)*(1.f/norm()); }
};
vec3 cross(const vec3 v1, const vec3 v2) {
return { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
}
struct Material {
float refractive_index = 1;
float albedo[4] = {2,0,0,0};
vec3 diffuse_color = {0,0,0};
float specular_exponent = 0;
};
struct Sphere {
vec3 center;
float radius;
Material material;
};
constexpr Material ivory = {1.0, {0.9, 0.5, 0.1, 0.0}, {0.4, 0.4, 0.3}, 50.};
constexpr Material glass = {1.5, {0.0, 0.9, 0.1, 0.8}, {0.6, 0.7, 0.8}, 125.};
constexpr Material red_rubber = {1.0, {1.4, 0.3, 0.0, 0.0}, {0.3, 0.1, 0.1}, 10.};
constexpr Material mirror = {1.0, {0.0, 16.0, 0.8, 0.0}, {1.0, 1.0, 1.0}, 1425.};
constexpr Sphere spheres[] = {
{{-3, 0, -16}, 2, ivory},
{{-1.0, -1.5, -12}, 2, glass},
{{ 1.5, -0.5, -18}, 3, red_rubber},
{{ 7, 5, -18}, 4, mirror}
};
constexpr vec3 lights[] = {
{-20, 20, 20},
{ 30, 50, -25},
{ 30, 20, 30}
};
vec3 reflect(const vec3 &I, const vec3 &N) {
return I - N*2.f*(I*N);
}
vec3 refract(const vec3 &I, const vec3 &N, const float eta_t, const float eta_i=1.f) { // Snell's law
float cosi = - std::max(-1.f, std::min(1.f, I*N));
if (cosi<0) return refract(I, -N, eta_i, eta_t); // if the ray comes from the inside the object, swap the air and the media
float eta = eta_i / eta_t;
float k = 1 - eta*eta*(1 - cosi*cosi);
return k<0 ? vec3{1,0,0} : I*eta + N*(eta*cosi - std::sqrt(k)); // k<0 = total reflection, no ray to refract. I refract it anyways, this has no physical meaning
}
std::tuple<bool,float> ray_sphere_intersect(const vec3 &orig, const vec3 &dir, const Sphere &s) { // ret value is a pair [intersection found, distance]
vec3 L = s.center - orig;
float tca = L*dir;
float d2 = L*L - tca*tca;
if (d2 > s.radius*s.radius) return {false, 0};
float thc = std::sqrt(s.radius*s.radius - d2);
float t0 = tca-thc, t1 = tca+thc;
if (t0>.001) return {true, t0}; // offset the original point by .001 to avoid occlusion by the object itself
if (t1>.001) return {true, t1};
return {false, 0};
}
std::tuple<bool,vec3,vec3,Material> scene_intersect(const vec3 &orig, const vec3 &dir) {
vec3 pt, N;
Material material;
float nearest_dist = 1e10;
if (std::abs(dir.y)>.001) { // intersect the ray with the checkerboard, avoid division by zero
float d = -(orig.y+4)/dir.y; // the checkerboard plane has equation y = -4
vec3 p = orig + dir*d;
if (d>.001 && d<nearest_dist && std::abs(p.x)<10 && p.z<-10 && p.z>-30) {
nearest_dist = d;
pt = p;
N = {0,1,0};
material.diffuse_color = (int(.5*pt.x+1000) + int(.5*pt.z)) & 1 ? vec3{.3, .3, .3} : vec3{.3, .2, .1};
}
}
for (const Sphere &s : spheres) { // intersect the ray with all spheres
auto [intersection, d] = ray_sphere_intersect(orig, dir, s);
if (!intersection || d > nearest_dist) continue;
nearest_dist = d;
pt = orig + dir*nearest_dist;
N = (pt - s.center).normalized();
material = s.material;
}
return { nearest_dist<1000, pt, N, material };
}
vec3 cast_ray(const vec3 &orig, const vec3 &dir, const int depth=0) {
auto [hit, point, N, material] = scene_intersect(orig, dir);
if (depth>4 || !hit)
return {0.2, 0.7, 0.8}; // background color
vec3 reflect_dir = reflect(dir, N).normalized();
vec3 refract_dir = refract(dir, N, material.refractive_index).normalized();
vec3 reflect_color = cast_ray(point, reflect_dir, depth + 1);
vec3 refract_color = cast_ray(point, refract_dir, depth + 1);
float diffuse_light_intensity = 0, specular_light_intensity = 0;
for (const vec3 &light : lights) { // checking if the point lies in the shadow of the light
vec3 light_dir = (light - point).normalized();
auto [hit, shadow_pt, trashnrm, trashmat] = scene_intersect(point, light_dir);
if (hit && (shadow_pt-point).norm() < (light-point).norm()) continue;
diffuse_light_intensity += std::max(0.f, light_dir*N);
specular_light_intensity += std::pow(std::max(0.f, -reflect(-light_dir, N)*dir), material.specular_exponent);
}
return material.diffuse_color * diffuse_light_intensity * material.albedo[0] + vec3{1., 1., 1.}*specular_light_intensity * material.albedo[1] + reflect_color*material.albedo[2] + refract_color*material.albedo[3];
}
int main() {
constexpr int width = 1024;
constexpr int height = 768;
constexpr float fov = 1.05; // 60 degrees field of view in radians
std::vector<vec3> framebuffer(width*height);
#pragma omp parallel for
for (int pix = 0; pix<width*height; pix++) { // actual rendering loop
float dir_x = (pix%width + 0.5) - width/2.;
float dir_y = -(pix/width + 0.5) + height/2.; // this flips the image at the same time
float dir_z = -height/(2.*tan(fov/2.));
framebuffer[pix] = cast_ray(vec3{0,0,0}, vec3{dir_x, dir_y, dir_z}.normalized());
}
std::ofstream ofs("./out.ppm", std::ios::binary);
ofs << "P6\n" << width << " " << height << "\n255\n";
for (vec3 &color : framebuffer) {
float max = std::max(1.f, std::max(color[0], std::max(color[1], color[2])));
for (int chan : {0,1,2})
ofs << (char)(255 * color[chan]/max);
}
return 0;
}