-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprelude.rev
235 lines (227 loc) · 9.42 KB
/
prelude.rev
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// appends an item to a list
append: forall A. ([A], A) <=> [A] =
forall A. \(l, x) => case l of
[] => [x];
y :: r => y :: append{A}(r, x)
// reverses a list
reverse: forall A. [A] <=> [A] =
forall A. \l => case l of
[] => [];
x :: r => append{A}(reverse{A}(r), x)
// applies each element of a list to a function
map: forall A. forall B. (A -> B) -> ([A] -> [B]) =
forall A. forall B. \f => \l => case l of
[] => [];
a :: r => f(a) :: map{A}{B}(f)(r)
// applies each element of a list to a reversible function
mapr: forall A. forall B. (A <=> B) -> ([A] <=> [B]) =
forall A. forall B. \f => \l => case l of
[] => [];
a :: r => f(a) :: mapr{A}{B}(f)(r)
// returns the length of a string
strlen: String -> Int =
\splitAt(1)~(c, r) => case c of
"" => 0;
x => 1 + strlen(r)
// returns the substring at index [f, t)
substr: String -> (Int, Int) -> String =
\s => \(f, t) => let (x2, s2) = splitAt(&f)(s);
(s3, x3) = splitAt(t - f)(s2)
in s3
// splits the string at n characters from the right
splitAtRight: Int -> String <=> (String, String) =
\n => \s => case s of
splitAt(n)~(s2, "") => ("", s2);
splitAt(1)~(c, s2) => let (s3, s4) = splitAtRight(n)(s2) in (splitAt(1)~(c, s3), s4)
// reverses a string
strReverse: String <=> String =
\s => case s of
"" => "";
splitAtRight(1)~(r, c) => splitAt(1)~(c, strReverse(r))
// reversible parser type
type Parser = forall A. String <=> (A, String)
type Equ = forall A. A <=> ()
// returns the number of leading whitespaces of a string and the string without leading whitespaces
scanWS: Parser{Int} =
\splitAt(1)~(c, r) => case c of
"" => (0, r);
" " => let (ws, y) = scanWS(r) in (ws + 1, y);
y => (0, splitAt(1)~(y, r))
// returns the string without leading whitespaces
skipWS: String <=> String =
\scanWS~(ws, s) =>
let () = forget{Int}(0)(ws) in s
// muladd(k)(a, b) = a * k + b. muladd(k)~(y) = (floor(y / k), y mod k)
muladd: Int -> (Int, Int) <=> Int =
\k => \(a, b) =>
let y = a * k + b;
() = forget{Int}(y - y / k * k)(b)
in y
str2Int_: String <=> Int =
\s => case s of
"" => 0;
splitAt(1)~("0", r) => muladd(10)(str2Int_(r), 0);
splitAt(1)~("1", r) => muladd(10)(str2Int_(r), 1);
splitAt(1)~("2", r) => muladd(10)(str2Int_(r), 2);
splitAt(1)~("3", r) => muladd(10)(str2Int_(r), 3);
splitAt(1)~("4", r) => muladd(10)(str2Int_(r), 4);
splitAt(1)~("5", r) => muladd(10)(str2Int_(r), 5);
splitAt(1)~("6", r) => muladd(10)(str2Int_(r), 6);
splitAt(1)~("7", r) => muladd(10)(str2Int_(r), 7);
splitAt(1)~("8", r) => muladd(10)(str2Int_(r), 8);
splitAt(1)~("9", r) => muladd(10)(str2Int_(r), 9)
// returns the integer represented by a string ignoring leading zeroes and whitespaces
str2Int: String <=> Int =
\skipWS~(s) => str2Int_(strReverse(s))
// parses a fixed string
pWord: String -> Parser{()} =
\w: String => \splitAt(strlen(&w))~(&w, r) => ((), r)
// parser one of a set of characters given as a string
pChar: String -> Parser{String} =
\cs => case cs of
"" => pFail{String}("all characters failed");
splitAt(1)~(c, rcs) => \s <=> case () of
() => pMap{()}{String}(pWord(c))(\() <=> &c)(s);
() => pChar(rcs)(s)
pConst: forall A. String -> Equ{A} -> Parser{A} =
forall A. \w: String => \a => pMap{()}{A}(pWord(w))(a~)
// parses nothing, always succeeds
pEmpty: Parser{()} =
pWord("")
pEmptyList: forall A. Parser{[A]} =
forall A. \s => ([], s)
pFail: forall A. String -> Parser{A} =
forall A. \msg => \reject{String}(msg)() => reject{(A, String)}(msg)()
pWS_: String <=> (String, String) =
\s: String => case s of
splitAt(1)~(" ", r) =>
let (ws, r2) = pWS_(r) in
(splitAt(1)~(" ", ws), r2);
r => ("", r)
// parses (possibly empty) whitespaces
pWS: String -> Parser{()} =
\default => pForget{String}(default)(pWS_)
// forgets a parse result by providing a default
pForget: forall A. A -> Parser{A} -> Parser{()} =
forall A. \a => \p => \s <=>
let (x, r) = p(s);
() = forget{A}(a)(x) in
((), r)
// applies a reversible function to a parser
pMap: forall A. forall B. Parser{A} -> (A <=> B) -> Parser{B} =
forall A. forall B. \pa => \f => \s <=>
let (a, r) = pa(s) in (f(a), r)
// monad bind for parsers
pBind: forall A. forall B. Parser{A} -> (A -> Parser{B}) -> Parser{(A, B)} =
forall A. forall B. \pa => \f => \s <=>
let (a, r) = pa(s);
(b, r2) = f(a)(r)
in ((a, b), r2)
pRepSepN: forall A. Int -> Parser{A} -> Parser{()} -> Parser{[A]} =
forall A. \n => case n of
0 => \p => \ps => pEmptyList{A};
1 => \p => \ps => \s <=> let (x1, s1) = p(s) in ([x1], s1);
n2 + 1 => \p => \ps => \s <=> let (x1, s1) = p(s);
((), s2) = ps(s1);
(l3, s3) = pRepSepN{A}(n2)(p)(ps)(s2)
in (x1 :: l3, s3)
// non-empty repeating parser with separator
pRepSep1: forall A. Parser{A} -> Parser{()} -> Parser{[A]} =
forall A. \p => \pSep => \s => case () of
() => let (v1, r1) = p(s);
((), r2) = pSep(r1);
(l3, r3) = pRepSep1{A}(p)(pSep)(r2)
in (v1 :: l3, r3);
() => let (v1, r1) = p(s)
in ([v1], r1)
// possibly empty repeating parser with separator
pRepSep: forall A. Parser{A} -> Parser{()} -> Parser{[A]} =
forall A. \p => \pSep => \s => case () of
() => pRepSep1{A}(p)(pSep)(s);
() => ([], s)
// non-empty repeating parser
pRep1: forall A. Parser{A} -> Parser{[A]} =
forall A. \p => pRepSep1{A}(p)(pEmpty)
// possibly empty repeating parser (Kleene-star)
pRep: forall A. Parser{A} -> Parser{[A]} =
forall A. \p => pRepSep{A}(p)(pEmpty)
// parsers in sequence
pSeq: forall A. [Parser{A}] -> Parser{[A]} =
forall A. \ps => case ps of
[] => \s => ([], s);
p :: rps => \s => let (x1, s1) = p(s);
(l2, s2) = pSeq{A}(rps)(s1)
in (x1 :: l2, s2)
pThen: forall A. forall B. (Parser{A}, Parser{B}) -> Parser{(A, B)} =
forall A. forall B. \(pa, pb) => \s =>
let (a, s1) = pa(s);
(b, s2) = pb(s1)
in ((a, b), s2)
pThenL: forall A. (Parser{A}, Parser{()}) -> Parser{A} =
forall A. \(pa, pb) =>
pMap{(A, ())}{A}(pThen{A}{()}(pa, pb))(\(a, ()) => a)
pThenR: forall A. (Parser{()}, Parser{A}) -> Parser{A} =
forall A. \(pa, pb) =>
pMap{((), A)}{A}(pThen{()}{A}(pa, pb))(\((), a) => a)
// parser tried in order
pTry: forall A. [Parser{A}] -> Parser{A} =
forall A. \ps => case ps of
p :: rps => \s => (case () of
() => p(s);
() => pTry{A}(rps)(s));
[] => pFail{A}("Out of alternatives")
// parses a single base-10 digit to an integer
pDigit: Parser{Int} =
pTry{Int}(
map{(String, Int)}{Parser{Int}}
(\(d, v) => pMap{()}{Int}(pWord(d))(\() => &v))
([("0", 0), ("1", 1), ("2", 2), ("3", 3), ("4", 4),
("5", 5), ("6", 6), ("7", 7), ("8", 8), ("9", 9)])
)
// parses a sequence of digits base-10 into a single integer
pInt: Parser{Int} = pMap{[Int]}{Int}(pRep1{Int}(pDigit))(
\ds => case ds of
[0] => 0;
ds2 => fix(digits2Int: [Int] <=> Int =
\ds3 => case ds3 of
[] => 0;
append{Int}(rds, d) => muladd(10)(digits2Int(rds), d))(ds2)
)
// parses an identifier
pIdent: Parser{String} = pMap{[[String]]}{String}(
pSeq{[String]}([
pMap{String}{[String]}(pChar("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"))(\s => [s]),
pRep{String}(pChar("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"))
]))(let join = fix(join: [String] <=> String = \ss <=> case ss of
[] => "";
s :: rss => splitAt(1)~(s, join(rss)))
in \[[s], ss] => splitAt(1)~(s, join(ss)))
// parses identifier-integer pairs seperated by comma ignoring spaces
pKeyValue: Parser{[(String, Int)]} =
pRepSep{(String, Int)}(
pThen{String}{Int}(pIdent, pThenR{Int}(pWS(" "), pThenR{Int}(pWord("="), pThenR{Int}(pWS(" "), pInt))))
)(pThenL{()}(pWS(""), pThenR{()}(pWord(","), pWS(" "))))
// filter function. where{A}(f)(x) returns x, but only if f(x) == True.
// otherwise it fails
where: forall A. (A -> Bool) -> A <=> A =
forall A. \check => \a =>
case &(check(a)) of
&True => a
// absolute value
abs: Int <=> Int = \a => case a of
where{Int}(\aa => aa >= 0)(aa) => aa;
aa => aa * (0 - 1)
// example: integer multiplication defined using integer addition
mulFromAdd: Int -> Int <=> Int =
\k => \x => case x of
&0 =>
let y = forget{Int}(0)~() in
where{Int}(\yy => abs(yy) < k)(y);
where{Int}(\xx => xx > 0 && k > 0)(xx) =>
where{Int}(\yy => yy > 0 && k > 0)(mulFromAdd(k)(xx - 1) + k);
where{Int}(\xx => xx > 0 && k < 0)(xx) =>
where{Int}(\yy => yy < 0 && k < 0)(mulFromAdd(k)(xx - 1) + k);
where{Int}(\xx => xx < 0 && k > 0)(xx) =>
where{Int}(\yy => yy < 0 && k > 0)(mulFromAdd(0 - k)(xx * (0 - 1)));
where{Int}(\xx => xx < 0 && k < 0)(xx) =>
where{Int}(\yy => yy > 0 && k < 0)(mulFromAdd(0 - k)(xx * (0 - 1)))