-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
54 lines (39 loc) · 2.3 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import numpy as np
from torch.utils import data
import torch.nn.utils.rnn as rnn
class Train_Dataset(data.Dataset):
def __init__(self, feature_data_path, transcript_data_path):
self.feature_data = np.load(feature_data_path, fix_imports=True, encoding='bytes', allow_pickle=True)
self.transcript_data = np.load(transcript_data_path, fix_imports=True, encoding='bytes', allow_pickle=True)
def __len__(self):
return len(self.feature_data)
def __getitem__(self, item):
return torch.Tensor(self.feature_data[item]), torch.Tensor(self.transcript_data[item])
class Test_Dataset(data.Dataset):
def __init__(self, feature_data_path):
self.feature_data = np.load(feature_data_path, fix_imports=True, encoding='bytes', allow_pickle=True)
def __len__(self):
return len(self.feature_data)
def __getitem__(self, item):
return torch.Tensor(self.feature_data[item])
def train_collate(batch):
frames = [instance[0] for instance in batch]
transcripts = np.array([instance[1].numpy() for instance in batch])
frame_lengths = torch.LongTensor([len(frame) for frame in frames])
padded_frames = rnn.pad_sequence(frames, batch_first=True)
sorted_frame_lengths, permute_index = frame_lengths.sort(0, descending=True)
sorted_padded_frames = padded_frames[permute_index.data.numpy()]
sorted_transcripts = transcripts[permute_index.data.numpy()]
sorted_transcript_lengths = [len(t) for t in sorted_transcripts]
sorted_transcripts = [torch.LongTensor(transcript) for transcript in sorted_transcripts]
sorted_padded_transcripts = rnn.pad_sequence(sorted_transcripts, batch_first=True)
_, unpermute_index = permute_index.sort(0)
return sorted_padded_frames, sorted_padded_transcripts, sorted_frame_lengths, sorted_transcript_lengths, unpermute_index
def test_collate(frames):
frame_lengths = torch.LongTensor([len(frame) for frame in frames])
padded_frames = rnn.pad_sequence(frames, batch_first=True)
sorted_frame_lengths, permute_index = frame_lengths.sort(0, descending=True)
sorted_padded_frames = padded_frames[permute_index.data.numpy()]
_, unpermute_index = permute_index.sort(0)
return sorted_padded_frames, sorted_frame_lengths, unpermute_index