Skip to content

Latest commit

 

History

History
325 lines (257 loc) · 16.6 KB

README.md

File metadata and controls

325 lines (257 loc) · 16.6 KB

Datasets

The datasets included in this folder are provided for the convenience of reproducing our analyses. The citation and source of each dataset is listed in the supplementary tables of our two manuscripts. Most included datasets have been posted to public repositories (FigShare and DataDryad) and are therefore citable. Not all datasets used in our analyses are included (see the manuscripts' supplementary materials). Datasets entailing original (raw) data are provided with the consent of the original author. Datasets whose source is listed as Novak & Stouffer (2020) were extracted from the original publication.

PLEASE obtain and cite each study and dataset appropriately for use in your own analyses.

Study citation Data source (repository) citation
Chan et al.(2017) Chan et al.(2017)
Chant & Turnbull (1966) Novak & Stouffer (2020)
Chong & Oetting (2006) Chong (2020)
Colton (1983; 1987) Novak & Stouffer (2020)
Crowley & Martin (1989) Novak & Stouffer (2020)
Edwards (1961) Novak & Stouffer (2020)
Elliott (2005) Elliot (2020a)
Elliott (2006) Elliot (2020b)
Eveleigh & Chant (1982) Novak & Stouffer (2020)
Fussmann et al.(2005) Fussmann (2020)
Griffen & Delaney (2007) Novak & Stouffer (2020)
Hassan (1976) Novak & Stouffer (2020)
Hossie & Murray (2016) Hossie & Murray (2020)
Huffaker & Matsumoto (1982) Novak & Stouffer (2020)
Iyer & Rao (1996) Novak & Stouffer (2020)
Johnson (2006) Novak & Stouffer (2020)
Jones (1986) Jones & Hassell (1988) Novak & Stouffer (2020)
Katz (1985) Arditi & Akçakaya (1990)
Kfir (1983) Novak & Stouffer (2020)
Kratina et al.(2009) Kratina (2020)
Krylov (1992) Novak & Stouffer (2020)
Kumar & Tripathi (1985) Novak & Stouffer (2020)
Lang et al.(2012) Lang (2020)
Lester & Harmsen (2002) Lester (2020)
Long et al.(2012b) Long (2020a)
Long et al.(2012a) Long (2020b)
Mansour & Lipcius (1991) Novak & Stouffer (2020)
Mattila & Bonsdorff (1998) Novak & Stouffer (2020)
Médoc et al.(2013) Médoc et al.(2020a)
Médoc et al.(2015) Médoc et al.(2020b)
Mertz & Davies (1968) Novak & Stouffer (2020)
Mills & Lacan (2004) Novak & Stouffer (2020)
Montoya et al.(2000) Novak & Stouffer (2020)
Prokopenko et al.(2017) Prokopenko (2020)
Ranta & Nuutinen (1985) Novak & Stouffer (2020)
Reeve (1997) Reeve (2020)
Salt (1974) Novak & Stouffer (2020)
Uttley (1980) Novak & Stouffer (2020)
Vahl et al.(2005) Novak & Stouffer (2020)
Von Westernhagen & Rosenthal (1976) Novak & Stouffer (2020)
Vucetich et al.(2002) Vucetich et al.(2002) & Jost et al. (2005)
Walde & Davies (1984) Novak & Stouffer (2020)
Wong & Barbeau (2005) Wong & Barbeau (2020)

Arditi, R. & Akçakaya, H. R. (1990). Underestimation of mutual interference of predators. Oecologia, 83, 358–361.

Chan, K., Boutin, S., Hossie, T. J., Krebs, C., O’Donoghue, M. & Murray, D. L. (2017). Improving the assessment of predator functional responses by considering alternate prey and predator interactions. Ecology, 98, 1787–1796.

Chant, D. A. & Turnbull, A. L. (1966). Effects of predator and prey densities on interactions between goldfish and Daphnia pulex (De Geer). Canadian Journal of Zoology, 44, 285–289.

Chong, J.-H. (2020). Data from: Functional response and progeny production of the Madeira mealybug parasitoid, Anagyrus sp. nov. nr. sinope: the effects of host and parasitoid densities. Figshare: https://doi.org/10.6084/m9.figshare.12781250.v1.

Chong, J.-H. & Oetting, R. D. (2006). Functional response and progeny production of the Madeira mealybug parasitoid, Anagyrus sp. nov. nr. sinope: the effects of host and parasitoid densities. Biological Control, 39, 320–328.

Colton, T. F. (1983). Predation by damselfly naiad on two species of zooplankton: preference, switching, and the modelling of predation. Ph.D. thesis, Duke University.

Colton, T. F. (1987). Extending functional response models to include a second prey type: an experimental test. Ecology, 68, 900–912.

Crowley, P. H. & Martin, E. K. (1989). Functional responses and interference within and between year classes of a dragonfly population. Journal of the North American Benthological Society, 8, 211–221.

Edwards, R. L. (1961). The area of discovery of two insect parasites, Nasonia vitripennis (Walker) and Trichogramma evanescens (Westwood), in an artificial environment. The Canadian Entomologist, 93, 475–481.

Elliott, J. M. (2005). Ontogenetic shifts in the functional response and interference interactions of Rhyacophila dorsalis larvae (Trichoptera). Freshwater Biology, 50, 2021–2033.

Elliott, J. M. (2006). Prey switching in Rhyacophila dorsalis (Trichoptera) alters with larval instar. Freshwater Biology, 51, 913–924.

Elliott, J. M. (2020a). Data from: Ontogenetic shifts in the functional response and interference interactions of Rhyacophila dorsalis larvae (Trichoptera). FigShare: https://doi.org/10.6084/m9.figshare.13028114.v1.

Elliott, J. M. (2020b). Data from: Prey switching in Rhyacophila dorsalis (Trichoptera) alters with larval instar. FigShare: https://doi.org/10.6084/m9.figshare.13028129.v1.

Eveleigh, E. S. & Chant, D. (1982). Experimental studies on acarine predator–prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae). Canadian Journal of Zoology, 60, 611–629.

Fussmann, G. F. (2020). Data from: A direct, experimental test of resource vs. consumer dependence. FigShare: https://doi.org/10.6084/m9.figshare.12782297.v1.

Fussmann, G. F., Weithoff, G. & Yoshida, T. (2005). A direct, experimental test of resource vs. consumer dependence. Ecology, 86, 2924–2930.

Griffen, B. D. & Delaney, D. G. (2007). Species invasion shifts the importance of predator dependence. Ecology, 88, 3012–3021.

Hassan, S. T. (1976). The area of discovery of Apanteles glomeratus (Hymenoptera: Braconidae), Pteromalus puparum (Pteromalidae) and Brachymeria regina (Chalcididae). Entomologia experimentalis et applicata, 20, 199–205.

Hossie, T. J. & Murray, D. L. (2016). Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators. Ecology, 97, 834–841.

Hossie, T. J. & Murray, D. L. (2020). Data from: Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators. Figshare: https://doi.org/10.6084/m9.figshare.12739181.v1.

Huffaker, C. B. & Matsumoto, B. M. (1982). Group versus individual functional responses of Venturia [= Nemeritis] canescens (Grav.). Researches on Population Ecology, 24, 250–269.

Iyer, N. & Rao, T. (1996). Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: laboratory and field studies. Freshwater Biology, 36, 521–533.

Johnson, D. W. (2006). Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology, 87, 1179–1188.

Jones, T. H. (1986). Patterns of parasitism by Trybliographa rapae (Westw.), a cynipid parasitoid of the cabbage root fly. Ph.D. thesis, University of London, Imperial College.

Jones, T. H. & Hassell, M. P. (1988). Patterns of parasitism by Trybliographa rapae, a cynipid parasitoid of the cabbage root fly, under laboratory and field conditions. Ecological entomology, 13, 309–317.

Jost, C., G. Devulder, J. A. Vucetich, R. O. Peterson & R. Arditi. The wolves of isle royale display scale-invariant satiation and ratio-dependent predation on moose. Journal of Animal Ecology, 809–816.

Katz, C. H. (1985). A nonequilibrium marine predator-prey interaction. Ecology, 66, 1426–1438.

Kfir, R. (1983). Functional response to host density by the egg parasite Trichogramma pretiosum. Entomophaga, 28, 345–353.

Kratina, P. (2020). Data from: Functional responses modified by predator density. Figshare: https://doi.org/10.6084/m9.figshare.12794816.v1.

Kratina, P., Vos, M., Bateman, A. & Anholt, B. R. (2009). Functional responses modified by predator density. Oecologia, 159, 425–433.

Krylov, P. I. (1992). Density-dependent predation of Chaoborus flavicans on Daphnia longispina in a small lake: the effect of prey size. Hydrobiologia, 239, 131–140.

Kumar, A. & Tripathi, C. P. M. (1985). Parasitoid–host relationship between Trioxys (Binodoxys) indicus Subba Rao & Sharma (Hymenoptera: Aphidiidae) and Aphis craccivora Koch (Hemiptera: Aphididae): effect of host plants on the area of discovery of the parasitoid. Canadian Journal of Zoology, 63, 192–195.

Lang, B. (2020). Data from: Warming effects on consumption and intraspecific interference competition depend on predator metabolism. Figshare: https://doi.org/10.6084/m9.figshare.12789986.

Lang, B., Rall, B. C. & Brose, U. (2012). Warming effects on consumption and intraspecific interference competition depend on predator metabolism. Journal of Animal Ecology, 81, 516–523.

Lester, P. J. (2020). Data from: Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. Figshare: https://doi.org/10.6084/m9.figshare.12838352.

Lester, P. J. & Harmsen, R. (2002). Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. Journal of Applied Ecology, 39, 455–468.

Long, W. C. (2020). Data from: Cannibalism in red king crab, Paralithodes camtschaticus (Tilesius, 1815): Effects of habitat type and predator density on predator functional response. FigShare: https://doi.org/10.6084/m9.figshare.12780440.

Long, W. C. (2020). Data from: Density-dependent indirect effects: apparent mutualism and apparent competition coexist in a two-prey system. FigShare: https://doi.org/10.6084/m9.figshare.12780455.v1.

Long, W. C., Gamelin, E. F., Johnson, E. G. & Hines, A. H. (2012). Density-dependent indirect effects: apparent mutualism and apparent competition coexist in a two-prey system. Marine Ecology Progress Series, 456, 139–148.

Long, W. C., Popp, J., Swiney, K. M. & Van Sant, S. B. (2012). Cannibalism in red king crab, Paralithodes camtschaticus (Tilesius, 1815): Effects of habitat type and predator density on predator functional response. Journal of Experimental Marine Biology and Ecology, 422, 101–106.

Mansour, R. A. & Lipcius, R. N. (1991). Density-dependent foraging and mutual interference in blue crabs preying upon infaunal clams. Marine Ecology Progress Series, 72, 239.

Mattila, J. & Bonsdorff, E. (1998). Predation by juvenile flounder (Platichthys flesus L.): a test of prey vulnerability, predator preference, switching behaviour and functional response. Journal of Experimental Marine Biology and Ecology, 227, 221–236.

Médoc, V., Albert, H. & Spataro, T. (2015). Functional response comparisons among freshwater amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biological Invasions, 17, 3625–3637.

Médoc, V., Spataro, T. & Arditi, R. (2013). Prey: predator ratio dependence in the functional response of a freshwater amphipod. Freshwater Biology, 58, 858–865.

Médoc, V., Albert, H. & Spataro, T. (2020b). Data from: Functional response comparisons among freshwater amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Figshare: https://doi.org/10.6084/m9.figshare.12937841.v1.

Médoc, V., Spataro, T. & Arditi, R. (2020a). Data from "Prey: predator ratio dependence in the functional response of a freshwater amphipod." Figshare: https://doi.org/10.6084/m9.figshare.12937670.v1.

Mertz, D. B. & Davies, R. B. (1968). Cannibalism of the pupal stage by adult flour beetles: An experiment and a stochastic model. Biometrics, 247–275.

Mills, N. J. & Lacan, I. (2004). Ratio dependence in the functional response of insect parasitoids: evidence from Trichogramma minutum foraging for eggs in small host patches. Ecological Entomology, 29, 208–216.

Montoya, P., Liedo, P., Benrey, B., Barrera, J. F., Cancino, J. & Aluja, M. (2000). Functional response and superparasitism by Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid of fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America, 93, 47–54.

Novak, M. & Stouffer, D. B. (2020). Data extracted for “Hidden layers of density dependence in consumer feeding rates”. Figshare: https://doi.org/10.6084/m9.figshare.12830792.

Prokopenko, C. M. (2020). Data from: Evaluation of alternative prey-, predator-, and ratio-dependent functional response models in a zooplankton microcosm. Figshare: https://doi.org/10.6084/m9.figshare.12813209.v1.

Prokopenko, C. M., Turgeon, K. & Fryxell, J. M. (2017). Evaluation of alternative prey-, predator-, and ratio-dependent functional response models in a zooplankton microcosm. Canadian Journal of Zoology, 95, 177–182.

Ranta, E. & Nuutinen, V. (1985). Foraging by the smooth newt (Triturus vulgaris) on zooplankton: functional responses and diet choice. The Journal of Animal Ecology, 275–293.

Reeve, J. D. (1997). Predation and bark beetle dynamics. Oecologia, 112, 48–54.

Reeve, J. D. (2020). Data from: Predation and bark beetle dynamics. Figshare: https://doi.org/10.6084/m9.figshare.12784175.v1.

Salt, G. W. (1974). Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum. Ecology, 55, 434–439.

Uttley, M. G. (1980). A laboratory study of mutual interference between freshwater invertebrate predators. Ph.D. thesis, University of York.

Vahl, W. K., Van der Meer, J., Weissing, F. J., Van Dullemen, D. & Piersma, T. (2005). The mechanisms of interference competition: two experiments on foraging waders. Behavioral Ecology, 16, 845–855.

Von Westernhagen, H. & Rosenthal, H. (1976). Predator-prey relationship between pacific herring, Clupea harengus pallasi, larvae and a predatory hyperiid amphipod, Hyperoche medusarum. Fishery Bulletin, 74.

Vucetich, J. A., Peterson, R. O. & Schaefer, C. L. (2002). The effect of prey and predator densities on wolf predation. Ecology, 83, 3003–3013.

Walde, S. J. & Davies, R. W. (1984). The effect of intraspecific interference on Kogotus nonus (Plecoptera) foraging behaviour. Canadian Journal of Zoology, 62, 2221–2226.

Wong, M. C. & Barbeau, M. A. (2005). Prey selection and the functional response of sea stars (Asterias vulgaris Verrill) and rock crabs (Cancer irroratus Say) preying on juvenile sea scallops (Placopecten magellanicus (Gmelin)) and blue mussels (Mytilus edulis Linnaeus). Journal of Experimental Marine Biology and Ecology, 327, 1–21.

Wong, M. C. & Barbeau, M. A. (2020). Data from: Prey selection and the functional response of sea stars (Asterias vulgaris Verrill) and rock crabs (Cancer irroratus Say) preying on juvenile sea scallops (Placopecten magellanicus (Gmelin)) and blue mussels (Mytilus edulis Linnaeus). FigShare: https://doi.org/10.6084/m9.figshare.12780191.v1.