-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprob_rerank.py
174 lines (147 loc) · 6.13 KB
/
prob_rerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import krovetz
import string
import re
from math import log
ks = krovetz.PyKrovetzStemmer()
stop_words = set(stopwords.words('english')) # | set(string.punctuation)
#word_df = 1
def preprocess(text):
word_tokens = word_tokenize(re.sub(r'[^a-zA-Z0-9]',' ',text.lower()))
processed = [ks.stem(w) for w in word_tokens if w not in stop_words]
return processed
def bm25(qtext,docs_id,docs_body,vocab_words_df,num_docs_collection,avg_docs_len):
rel_scores = [0 for i in range(len(docs_id))]
N = num_docs_collection
k1 = 1.4
b = 0.75
for q in qtext:
n_q = vocab_words_df.get(q,0)
idf_q = log(( (N-n_q+0.5)/(n_q+0.5) + 1))
for i in range(len(docs_id)):
# docid = docs_id[i]
docbody = docs_body[i]
f_q_d = docbody.count(q)
len_d = len(docbody)
curr_rel = idf_q * f_q_d * (k1+1) / (f_q_d + k1*(1-b+(b*len_d/avg_docs_len)))
rel_scores[i] += curr_rel
reranked_docs = [(doc,_) for _, doc in sorted(zip(rel_scores,docs_id), key=lambda x: x[0], reverse=True)]
return reranked_docs
def output_work(qid,reranked_docs,filepath):
with open(filepath,'a') as f:
curr_rank = 1
for item in reranked_docs:
print(qid,'Q0',item[0],curr_rank,item[1],'runid1',file=f)
curr_rank += 1
def do_task(docid_file_offset,qtext,result_docs,collection_file,expansion_limit):
percent_rel = 0.35
rel_docs_ct = int(percent_rel * len(result_docs))
qtext = preprocess(qtext)
qtext_set = set(qtext)
df_rel_doc_set, df_all_doc_set = {},{}
doc_body_all = []
i = 0
tot_doc_len = 0
with open(collection_file,'r',encoding="utf-8") as f:
for docid in result_docs:
"""
#test
if docid not in docid_file_offset:
doc_body_all.append([])
continue
#end test
"""
docid_seek = docid_file_offset[docid]
f.seek(docid_seek)
doc_data = f.readline()
doc_body = doc_data.rstrip('\n').split('\t')[-1]
doc_body = preprocess(doc_body)
tot_doc_len += len(doc_body)
doc_body_all.append(doc_body)
doc_body_set = set(doc_body)
for word in doc_body_set:
df_all_doc_set[word] = df_all_doc_set.get(word,0) + 1
if word in qtext_set:
continue
if i < rel_docs_ct:
df_rel_doc_set[word] = df_rel_doc_set.get(word,0) + 1
i += 1
vocab_words_df = df_all_doc_set
# Define variables as in paper
N = len(result_docs) # the number of documents in the collection
R = rel_docs_ct # the number of known relevant document for a request = 100
# r = the number of known relevant documents term t(i) occurs in
# n = the number of documents term t(i) occurs in = df(i)
for word,r in df_rel_doc_set.items():
n = vocab_words_df[word]
score = r * log ( ( (r+0.5)*(3*N-n-R+r+0.5) ) / ( (n-r+0.5)*(R-r+0.5) ) )
# just update the values
df_rel_doc_set[word] = score
# add query terms
new_queries = sorted(df_rel_doc_set.items(),key=lambda x:x[1], reverse = True)[:expansion_limit]
qtext.extend([qw_[0] for qw_ in new_queries])
return bm25(qtext=qtext,docs_id=result_docs,docs_body=doc_body_all,vocab_words_df=vocab_words_df,num_docs_collection=N,avg_docs_len=tot_doc_len/N+1e-4)
def prob_rerank_method(collection_file,top_100_file,expansion_limit,query_file,output_file):
# open a new file if output already exists
with open(output_file,'w') as f:
pass
docid_file_offset = {}
#vocab_words_df = {}
offset = 0
#tot_doc_len = 0
with open(collection_file,'r',encoding="utf-8") as f:
#for line in f:
while 1:
line = f.readline()
if not line:
break
line_comp = line.rstrip('\n').split('\t')
#doc_body_processed = preprocess(line_comp[-1])
#tot_doc_len += len(doc_body_processed)
#doc_body_processed = set(doc_body_processed)
#for word in doc_body_processed:
# vocab_words_df[word] = vocab_words_df.get(word,0) + 1
docid_file_offset.update({line_comp[0]:offset})
offset = f.tell()
#avg_doc_len_coll = tot_doc_len/len(docid_file_offset) if len(docid_file_offset)>0 else 0 # avoid divide by zero
with open(query_file,'r',encoding="utf-8") as f:
qline = f.readline()
qline_comp = qline.rstrip('\n').split('\t')
result_docs = []
query_count = 0
with open(top_100_file,'r',encoding="utf-8") as f100:
while 1:
#for line100 in f100:
line100 = f100.readline()
line100_comp = line100.rstrip('\n').split()
if not line100 or line100_comp[0] != qline_comp[0]:
#assert query_count == 100
qtext = qline_comp[1]
# process
reranked_docs = do_task(docid_file_offset=docid_file_offset,qtext=qtext,result_docs=result_docs,collection_file=collection_file,expansion_limit=expansion_limit)
output_work(qid=qline_comp[0],reranked_docs=reranked_docs,filepath=output_file)
query_count = 0
result_docs = []
qline = f.readline()
if not qline:
break
qline_comp = qline.rstrip('\n').split('\t')
result_docs.append(line100_comp[2])
query_count += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Probabilistic Retrieval Reranking')
parser.add_argument('query_file', metavar='query-file',
help='file containing the queries in the same tsv format as given in Table 1 for queries file')
parser.add_argument('top_100_file', metavar='top-100-file',
help='a file containing the top100 documents in the same format as train and dev top100 files given, which need to be reranked')
parser.add_argument('collection_file', metavar='collection-file',
help='file containing the full document collection (in the same format as msmarco-docs file given)')
parser.add_argument('expansion_limit', metavar='expansion-limit', type=int, choices=range(1,15+1),
help='is a number ranging from 1-15 that specifies the limit on the number of additional terms in the expanded query')
# not part of specs
parser.add_argument('-o','--output', metavar="resultfile", default="out_reranked",
help='the output file named resultfile which is generated by your program after reranking')
args = parser.parse_args()
prob_rerank_method(collection_file=args.collection_file,top_100_file=args.top_100_file,expansion_limit=args.expansion_limit,query_file=args.query_file,output_file=args.output)