-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcsvloader.py
82 lines (70 loc) · 2.76 KB
/
csvloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import csv
from collections import namedtuple
def clean_value(val):
if val is None:
return None
try:
return int(val)
except ValueError:
return val.replace("\\n", "\n")
# Return a function taking a tuple that right-pads the tuple to
# `to_n_columns` items with the empty string.
def pad_value_list(to_n_columns):
def apply(to_list):
l = list(to_list)
l += [""] * (to_n_columns - len(l))
return tuple(l)
return apply
# Load a database file (equivalent of treasurebox arks)
# For runtime-computed parameters, pass a function into kwargs
# for the attribute name you want, the function will be called
# with the loaded object, and the result added under the kwarg name.
# This is particularly useful for joining multiple DBs with a
# foreign-key relationship.
# Ex. >>> data = load_db_file("some.csv", myattr=lambda raw: raw.id + 1)
# >>> print(data[0])
# (id=0, myattr=1)
def load_db_file(file, **kwargs):
class_name = file.split("/")[-1].rsplit(".", 1)[0] + "_t"
with open(file, "r") as cin:
reader = csv.reader(cin)
fields = next(reader)
raw_field_len = len(fields)
# print(fields)
the_raw_type = namedtuple("_" + class_name, fields)
keys = list(kwargs.keys())
for key in keys:
fields.append(key)
the_type = namedtuple(class_name, fields)
padder = pad_value_list(raw_field_len)
# exclude empty lines and almost-empty lines (where all values are whitespace)
for val_list in filter(lambda list: len(list) != 0 and any(map(str.split, list)), reader):
# pad partial rows to N columns (issue 7)
val_list = padder(val_list)
temp_obj = the_raw_type(*map(clean_value, val_list))
try:
extvalues = tuple(kwargs[key](temp_obj) for key in keys)
except Exception:
raise RuntimeError(
"Uncaught exception while filling stage2 data for {0}. Are you missing data?".format(temp_obj))
yield the_type(*temp_obj + extvalues)
# Load a database file, and return a dict keyed by the content of the
# key_col parameter. This performs the same runtime-computing as
# load_db_file.
# Ex. >>> data = load_keyed_db_file("some.csv")
# >>> print(data[0])
# (id=13, another_column="string")
# >>> print(data)
# {13: (id=13, another_column="string")}
def load_keyed_db_file(file, key_col=0, **kwargs):
ret_dic = {}
tab = load_db_file(file, **kwargs)
for thing in tab:
ret_dic[thing[0]] = thing
return ret_dic
if __name__ == "__main__":
import sys
want_keys = sys.argv[2:]
file = sys.argv[1]
for entry in load_db_file(file):
print(*(getattr(entry, key) for key in want_keys))