-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
99 lines (76 loc) · 3.19 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import ast
import os
import sys
import json
from pathlib import Path
from jinja2 import Template, Environment, FileSystemLoader
import openai as oai
oai.api_key = os.getenv("OPENAI_API_KEY")
IS_MOCK = False
IS_DEBUG = True
#if IS_DEBUG:
# result0 = { "type": "fiction",
# "audience": "experienced-reader" }
env = Environment(loader=FileSystemLoader("prompts/"))
env.lstrip_blocks = True
env.trim_blocks = True
def test_jee(prompt, question):
prompt = prompt + question
completion = oai.ChatCompletion.create(model="gpt-3.5-turbo",
messages = [{"role":"user", "content":prompt}],
temperature = 0.3,
top_p = 1, n=1, max_tokens=400)
print(completion.choices[0].message.content)
def call_openai(prompt, max_tokens=100, temp=0.3):
completion = oai.ChatCompletion.create(model="gpt-3.5-turbo", messages = [{"role":"user", "content":prompt}],
temperature = temp, top_p = 1, n=1, max_tokens=max_tokens)
#print(completion.choices[0].message.content)
return(completion.choices[0].message.content)
def print_debug(prompt, prompt_idx=0):
print("PROMPT", str(prompt_idx))
print("---------------------")
print(prompt)
def select_subtopics(subtopics=None, concepts=None, subtopic0_tmp = "subtopics0.txt"):
''' Given subtopics and concepts, from concepts figure out which all subtopics the
student is weak in'''
with open("concepts.json", 'r') as f:
concepts = json.load(f)
prompt0_tmpl = env.get_template(subtopic0_tmp)
prompt0 = prompt0_tmpl.render(subject="Physics", grade="10", board="CBSE",
topic="Light - Reflection and Refraction",
subtopics = concepts["Light - Reflection and Refraction"])
print(prompt0)
result0 = call_openai(prompt0)
result0 = call_openai(prompt0 + "Next Question")
print(result0)
def answer_multistep(question, prompt0_file, prompt1_file):
# First get the book/movie type and audience level
prompt0_tmpl = env.get_template(prompt0_file)
prompt0 = prompt0_tmpl.render(prev_books=None, question=question)
# Then use the book/movie type info, inject like information
if IS_DEBUG: print_debug(prompt0, 0)
if not IS_MOCK:
result0 = call_openai(prompt0)
print(result0)
result0 = ast.literal_eval(result0)
# Now based on book/movie
# If fiction, then weight by important factors, any user choice, do reweight/normalize
if result0['type'] == 'physics':
weights = weight_params['fiction_young']
#
pass
# Then use the book/movie type info, inject like information
prompt1_tmpl = env.get_template("prompt1.txt")
prompt1 = prompt1_tmpl.render(weights=weights, book_name=book_name)
if IS_DEBUG: print_debug(prompt1, 1)
if not IS_MOCK:
result = call_openai(prompt1, max_tokens=400)
print(result)
if __name__ == "__main__":
#prompt_fname = sys.argv[1]
#question_name = sys.argv[2]
#print(sys.argv[2])
#prompt = Path(prompt_fname).read_text()
#with open(prompt_fname, "rb") as f:
# prompt = f.readlines()
select_subtopics()