-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathreader_lstm.py
167 lines (139 loc) · 5.49 KB
/
reader_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import json
import csv
import random
import operator
from keras.utils.np_utils import to_categorical
import numpy as np
import pandas as pd
from keras.utils.np_utils import to_categorical
from keras.preprocessing.text import Tokenizer
from nltk.tokenize import word_tokenize
random.seed(1984)
INPUT_PADDING = 50
OUTPUT_PADDING = 100
class Vocabulary(object):
def __init__(self, vocabulary_file, padding=None):
"""
Creates a vocabulary from a file
:param vocabulary_file: the path to the vocabulary
"""
self.vocabulary_file = vocabulary_file
with open(vocabulary_file, 'r',encoding='utf-8') as f:
self.vocabulary = json.load(f)
self.padding = padding
self.reverse_vocabulary = {v: k for k, v in self.vocabulary.items()}
def size(self):
"""
Gets the size of the vocabulary
"""
return len(self.vocabulary.keys())
def string_to_int(self, text):
"""
Converts a string into it's character integer
representation
:param text: text to convert
"""
#print(text)
tokens = text.split(" ")
#print(tokens)
integers = []
if self.padding and len(tokens) >= self.padding:
# truncate if too long
tokens = tokens[-(self.padding - 1):]
tokens.append('<eos>')
for c in tokens:
if c.strip(",").strip(".").strip(":") in self.vocabulary:
integers.append(self.vocabulary[c.strip(",").strip(".").strip(":")])
else:
integers.append(self.vocabulary['<unk>'])
# pad:
if self.padding and len(integers) < self.padding:
integers.reverse()
integers.extend([self.vocabulary['<pad>']]
* (self.padding - len(integers)))
integers.reverse()
if len(integers) != self.padding:
print(text)
raise AttributeError('Length of text was not padding.')
return integers
def int_to_string(self, integers):
"""
Decodes a list of integers
into it's string representation
"""
tokens = []
for i in integers:
tokens.append(self.reverse_vocabulary[i])
return tokens
class Data(object):
def __init__(self, file_name, vocabulary,kb_vocabulary):
"""
Creates an object that gets data from a file
:param file_name: name of the file to read from
:param vocabulary: the Vocabulary object to use
:param batch_size: the number of datapoints to return
:param padding: the amount of padding to apply to
a short string
"""
self.input_vocabulary = vocabulary
self.output_vocabulary = vocabulary
self.kb_vocabulary=kb_vocabulary
self.kbfile = "./data/normalised_kbtuples.csv"
self.file_name = file_name
def kb_out(self):
df=pd.read_csv(self.kbfile)
self.kbs=list(df["subject"]+" "+df["relation"])
self.kbs = np.array(list(
map(self.kb_vocabulary.string_to_int, self.kbs)))
def load(self):
"""
Loads data from a file
"""
df=pd.read_csv(self.file_name,encoding="latin1")
self.inputs = list(df["inputs"])
self.targets = list(df["outputs"])
self.labels= list(df["label"])
self.issues=to_categorical(list(df["issues"]), num_classes=13)
def transform(self):
"""
Transforms the data as necessary
"""
# @TODO: use `pool.map_async` here?
self.inputs = np.array(list(
map(self.input_vocabulary.string_to_int, self.inputs)))
self.targets = np.array(list(map(self.output_vocabulary.string_to_int, self.targets)))
self.labels = np.array(self.labels)
self.issues=np.array(self.issues)
def generator(self, batch_size):
"""
Creates a generator that can be used in `model.fit_generator()`
Batches are generated randomly.
:param batch_size: the number of instances to include per batch
"""
instance_id = range(len(self.inputs))
while True:
try:
batch_ids = random.sample(instance_id, batch_size)
#targets=np.array(self.targets[batch_ids])
#targets = np.array(list(map(lambda x: to_categorical(x,num_classes=self.output_vocabulary.size()),targets)))
#labels=np.array(self.labels)
#print(np.array(labels).shape)
yield ([np.array(self.inputs[batch_ids], dtype=int),np.array(self.targets[batch_ids],dtype=int),np.array(self.issues[batch_ids])],np.array(self.labels[batch_ids]))
except Exception as e:
print('EXCEPTION OMG')
print(e)
yield None, None,None
if __name__ == '__main__':
vocab = Vocabulary('./data/vocabulary.json', padding=20)
kb_vocabulary = Vocabulary('./data/vocabulary.json', padding=4)
print(vocab.string_to_int("find the address to a hospital or clinic. hospital#poi is at Stanford_Express_Care#address. thank you."))
ds = Data('./data/train_lstm.csv', vocab,kb_vocabulary)
ds.kb_out()
g = ds.generator(32)
ds.load()
ds.transform()
#print(vocab.string_to_int("find starbucks <eos>"))
for i in range(50):
print(next(g)[0][0][0],next(g)[1][0])
print(vocab.int_to_string(list(next(g)[0][0][0])))
break