-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathseg_mmtnn.py
49 lines (42 loc) · 1.8 KB
/
seg_mmtnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# -*- coding: UTF-8 -*-
import tensorflow as tf
import numpy as np
import math
from seg_base import SegBase
class SegMMTNN(SegBase):
def __init__(self, vocab_size, embed_size, skip_window):
SegBase.__init__(self)
self.skip_window = skip_window
self.vocab_size = vocab_size
self.window_size = 2 * self.skip_window + 1
self.vec_length = self.window_size + 1
self.embed_size = embed_size
self.concat_size = self.vec_length * self.embed_size
self.hidden_unit = 50
self.r = 10
self.alpha = 0.2
self.k = 0.2
self.x = tf.placeholder(dtype=tf.float32, shape=[self.concat_size, 1])
self.w1 = tf.Variable(
tf.truncated_normal([self.hidden_unit, self.concat_size], stddev=1.0 / math.sqrt(self.concat_size)))
self.b1 = tf.Variable(tf.zeros([self.hidden_unit, 1]), dtype=tf.float32)
self.w2 = tf.Variable(tf.random_uniform([self.tags_count, self.hidden_unit], -1.0, 1.0))
self.b2 = tf.Variable(tf.zeros([self.tags_count, 1]), dtype=tf.float32)
self.embeddings = tf.Variable(tf.random_uniform([self.tags_count, self.hidden_unit], -1.0, 1.0))
self.L = tf.Variable(tf.random_normal([self.embed_size, self.tags_count], 0, 1))
self.P = tf.Variable(tf.random_uniform([self.hidden_unit, self.concat_size, self.r], -1.0, 1.0))
self.Q = tf.Variable(tf.random_uniform([self.hidden_unit, self.r, self.concat_size], -1.0, 1.0))
self.word_score = None
self.sess = None
def train(self):
self.sess = tf.Session()
h = tf.add(tf.matmul(tf.matmul(tf.matmul(tf.transpose(self.x), self.P), self.Q), self.x),
tf.matmul(self.w1, self.x))
self.word_score = tf.add(tf.matmul(self.w2, tf.sigmoid(tf.add(h,self.b1))), self.b2)
self.sess.close()
def train_exe(self):
pass
def train_sentence(self):
pass
if __name__ == '__main__':
pass